Skip to main content
Log in

Transient motion and chaotic dynamics in a pair of van der Pol oscillators

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The transient chaos and the stable chaotic dynamics of coupled autonomous van der Pol (VdP) oscillators with cubic term are investigated. Transient chaos is a common phenomenon in externally driven van der Pol oscillators. Nevertheless, in coupled autonomous VdP oscillators the occurrence of transient chaos, even stable chaos, is a rare scenario. To the best of our knowledge, transient chaos has not often been observed in coupled autonomous van der Pol systems. We demonstrate that the nonlinear restoring forces in a pair of van der Pol oscillators can induce a transient chaotic route to deterministic chaos. The symmetric coupling has been considered and provided by perturbing the amplitude of one oscillator by a fraction another oscillator's amplitude. The coupled systems undergo a crisis when the coupling parameter passes through a certain threshold. The crisis occurs when the chaotic attractor behaves as a chaotic repeller for a transient time and transient chaos emerges. After transient motion, the system's dynamics is attracted either to a periodic motion or stationary state. The Lyapunov spectrum, bifurcation diagram, phase space trajectories and Poincaré section were used to study the chaotic motion. The effects of nonlinear restoring force have been investigated through bifurcation diagram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Poliashenko, S.R. McKay, C.W. Smith, Phys. Rev. A 44, 3452 (1991)

    Article  ADS  Google Scholar 

  2. M. Poliashenko, McKay, Phys. Rev. A 46, 5271 (1992)

    Article  ADS  Google Scholar 

  3. J. Kengne, J.C. Chedjou, M. Kom, K. Kyamkya, V.K. Tamba, Nonlinear Dyn. 76, 1119 (2014)

    Article  Google Scholar 

  4. D.G. Aronson, E.J. Doedel, H.G. Othmer, Physica D 25, 320 (1987)

    Article  Google Scholar 

  5. A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer, Berlin, 2009)

  6. P.E. Yu, A.P. Kuznetsov, I.R. Sataev, L.V. Turukina, Physica D 244, 36 (2013)

    Article  ADS  Google Scholar 

  7. T. Chakraborty, R.H. Rand, Int. J. Non-Linear Mech. 23, 369 (1988)

    Article  Google Scholar 

  8. A.P. Kuznetsov, E.P. Seleznev, N.V. Stankevich, Commun. Nonlinear Sci. Numer. Simul. 17, 3740 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.C. Chedjou, H.B. Fotsin, P. Woafo, S. Domngang, IEEE Trans. Circ. Syst. I 48, 748 (2001)

    Article  Google Scholar 

  10. J.M. Gonzalez-Miranda, Synchronization and Control of Chaos: An Introduction for Scientists and Engineers (Imperial College Press, London, 2004)

  11. I. Pastor, V.M. Perez-Garcia, F. Encinas-Sanz, J.M. Gerra, Phys. Rev. E 48, 171 (1983)

    Article  ADS  Google Scholar 

  12. I. Pastor-Diaz, A. Lopez-Fragas, Phys. Rev. E 52, 1480 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Poliasshenko, S.R. Mckay, C.W. Smith, Phys. Rev. A 43, 5638 (1991)

    Article  ADS  Google Scholar 

  14. D.W. Storti, R.H. Rand, Int. J. Non-Linear Mech. 17, 143 (1982)

    Article  Google Scholar 

  15. B. van der Pol, Philos. Mag. 7, 978 (1926)

    Article  Google Scholar 

  16. C.M. Pinto, J.T. Machado, J. Vib. Control 18, 2201 (2012)

    Article  MathSciNet  Google Scholar 

  17. R.S. Barbosa, J.T.A. Machado, B.M. Vinagre, A.J. Calderon, J. Vib. Control 13, 1291 (2007)

    Article  Google Scholar 

  18. E. Ryzhii, M. Ryzhii, Modelling of Heartbeat Dynamics with a System of Coupled Nonlinear Oscillators, in Biomedical Informatics and Technology - ACBIT 2013, edited by T.D. Pham, K. Ichikawa, M. Oyama-Higa, D. Coomans, X. Jiang, Vol. 404, Communications in Computer and Information Science (Springer, Berlin, Heidelberg, 2014) pp. 67--75

    MATH  Google Scholar 

  19. S. Wirkus, R. Rand, Nonlinear Dyn. 30, 205 (2002)

    Article  Google Scholar 

  20. V. Blažek, Czech. J. Phys. B 18, 644 (1968)

    Article  ADS  Google Scholar 

  21. A. Pikovsky, M. Rosenblum, Physica D 238, 27 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Wirkus, Nonlinear Dyn. 3, 205 (2002)

    Article  MathSciNet  Google Scholar 

  23. Z. Jianming, G. Xinsheng, Appl. Math. Model. 34, 2291 (2010)

    Article  MathSciNet  Google Scholar 

  24. E. Camacho, R. Rand, H. Howland, Int. J. Solids Struct. 41, 1233 (2004)

    Article  Google Scholar 

  25. Dasheng Liu, Hiroshi Yamaura, Nonlinear Dyn. 68, 95 (2012)

    Article  Google Scholar 

  26. F.M. Moukam Kakmeni et al., J. Sound Vib. 277, 783 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.A. Adronov, S.E. Vitt, S.E. Khaikin, Theory of Oscillators (Pergamon, Oxford, 1966)

  28. R. Rompala, R. Rand, H. Howland, Commun. Nonlinear Sci. Numer. Simul. 12, 794 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. G. Springer, Introduction to Riemann Surfaces (Addison-Wesley, 1957)

  30. C. Grebogi, E. Ott, J.A. Yorke, Physica D 7, 181 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. O.V. Maslennikov, V.I. Nekorkin, J. Kurth, Chaos 28, 033107 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. E. Ott, Chaos 3, 417 (1993)

    Article  ADS  Google Scholar 

  33. Z. Toroczkai et al., Phys. Rev. Lett. 80, 500 (1998)

    Article  ADS  Google Scholar 

  34. I. Dobson, H.D. Chiang, Syst. Control Lett. 13, 253 (1989)

    Article  Google Scholar 

  35. E. McCann, P. Yodzis, Am. Nat. 144, 873 (1994)

    Article  Google Scholar 

  36. J.D. Farmer, E. Ott, J.A. Yorke, Physica D 7, 153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aman Kumar Singh.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar Singh, A., Yadava, R.D.S. Transient motion and chaotic dynamics in a pair of van der Pol oscillators. Eur. Phys. J. Plus 134, 421 (2019). https://doi.org/10.1140/epjp/i2019-12804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12804-x

Navigation