Skip to main content
Log in

Coupled oscillators in non-commutative phase space: Path integral approach

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

We present the path integral techniques in a non-commutative phase space and illustrate the calculation in the case of an exact problem of the coupled oscillator in two dimensions. The non-commutativity, with respect to Poisson (classical) and Heisenberg (quantum) brackets, in this phase space, is governed by two small constant parameters. They characterize the geometric deformation of this space. The path integral is formulated in a mixed representation due to the non-commutativity of the coordinates on one hand and those of the momentum on the other hand. Using a canonical linear transformation in this non-commutative phase space, we retrieve the commutative phase space properties by which the study becomes more suitable. The case of the non-commutative coupled harmonic oscillator in two dimensions is treated and the thermodynamics properties of the assembly of such oscillators are derived too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, Non-commutative Geometry (Academic Press, London, 1994)

  2. M. Dubois-Violette, Non-commutative differential geometry, quantum mechanics and gauge Theory, in Differential Geometric Methods in Theoretical Physics, edited by C. Bartocci, U. Bruzzo, R. Cianci, Lect. Notes Phys., 375 (Springer-Verlag, 1990)

  3. A. Connes, M.R. Douglas, A. Schwarz, JHEP 02, 033 (1998)

    Google Scholar 

  4. M. Chaichian, P. Presnajder, A. Tureanu, Phys. Rev. Lett. 94, 151602 (2005)

    Article  ADS  Google Scholar 

  5. M.J. Neves, E.M.C. Abreu, Path integral formalism in a Lorentz invariant noncommutative space, arXiv:1206.4065 [hep-th] (2012)

  6. V.G. Kupriyanov, Phys. Lett. B 732, 385 (2014)

    Article  ADS  Google Scholar 

  7. S. Gangopadhyaya, F.G. Scholtz, J. Phys. A 47, 075301 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  8. S. Galluccio, F. Lizzi, P. Vitale, Phys. Rev. D 78, 085007 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. C. Duval, P. Horvathy, J. Phys. A 34, 10097 (2001) arXiv:hep-th/0106089

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Horvathy, Ann. Phys. 299, 128 (2002)

    Article  ADS  Google Scholar 

  11. S. Narison, Phys. Lett. B 552, 303 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  12. D.N. Blaschke, S. Hohenegger, M. Schweda, JHEP 11, 041 (2005)

    Article  ADS  Google Scholar 

  13. C. Acatrinei, JHEP 09, 007 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. S. Gangopadhyay, F.G. Scholtz, Phys. Rev. Lett. 102, 241602 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  15. G.W. Ford, M. Kac, P. Mazur, J. Math. Phys. 6, 504 (1965)

    Article  ADS  Google Scholar 

  16. A. Hatzinikitas, Phys. Lett. B 546, 157 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Jing, F.H. Liu, J.F. Chen, Phys. Rev. D 78, 125004 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  18. J. Jing, J.Y. Ma, Y.H. Guo et al., Eur. Phys. J. C 56, 591 (2008)

    Article  ADS  Google Scholar 

  19. J. Jing, J.F. Chen, Eur. Phys. J. C 60, 669 (2009)

    Article  ADS  Google Scholar 

  20. C. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer, 1998)

  21. T.V. Fityo, Phys. Lett. A 372, 5872 (2008)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Meftah.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khiari, L., Boudjedaa, T., Makhlouf, A. et al. Coupled oscillators in non-commutative phase space: Path integral approach. Eur. Phys. J. Plus 134, 396 (2019). https://doi.org/10.1140/epjp/i2019-12770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12770-3

Navigation