Skip to main content
Log in

Two-Particle System with Harmonic Oscillator Potential in Non-commutative Phase Space

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the influence of non-commutativity of both coordinates and momenta on the motion of a two-particle system in the presence of harmonic oscillator potential in plane. We obtain the equations of motion for the center of mass and the reduced mass and show that how they are dependent to the non-commutative parameters. We also show that the non-commutativity can be interpreted as an external force to system. In the limit of commutative phase space (\(\theta \rightarrow 0,\eta \rightarrow 0)\), the results are also agreement with the results of ordinary phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Snyder, Quantized Space-Time. Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. N. Seiberg, E. Witten, String theory and non-commutative geometry. J. High Energy Phys. 9909, 032 (1999)

    Article  ADS  MATH  Google Scholar 

  3. A. Saha, Colella-Overhauser-Werner test of the weak equivalence principle: a low-energy window to look into the noncommutative structure of space-time? Phys. Rev. D 89, 025010 (2014) and the references therein

  4. A. Hatzinikitas, I. Smyrnakis, The non-commutative harmonic oscillator in more than one dimensions. J. Math. Phys. 43, 113 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J.B. Geloun, S. Gangopadhyay, F.G. Scholtz, Harmonic oscillator in a background magnetic field in non-commutative quantum phase-space. EPL 86, 51001 (2009)

    Article  ADS  Google Scholar 

  6. H. Hassanabadi, S.S. Hosseini, A.N. Ikot, A. Boumali, S. Zarrinkamar, Tthe chiral operators and the statistical properties of the (2\(+\)1)-dimensional Dirac oscillator in non-commutative space. Eur. Phys. J. Plus 129, 232 (2014)

    Article  Google Scholar 

  7. P.D. Alvarez, J. Gomis, K. Kamimura, M.S. Plyushchay, Anisotropic harmonic oscillator, non-commutative landau problem and exotic Newton-Hooke symmetry. Phys. Lett. B 659, 906 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Smailagic, E. Spallucci, Non-commutative 3D harmonic oscillator. J. Phys. A 35, L363–L368 (2002)

    Article  ADS  MATH  Google Scholar 

  9. A. Smailagic, E. Spallucci, Isotropic representation of non-commutative 2D harmonic oscillator. Phys. Rev. D 65, 107701 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. P.R. Giri, P. Roy, on-commutative oscillator, symmetry and landau problem. Eur. Phys. J. C 57, 835 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kh.P. Gnatenko, O.V. Shyiko, Effect of non-commutativity on the spectrum of free particle and harmonic oscillator in rotationally invariant non-commutative phase space. Modern Phys. Lett. A 33(16), 1850091 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. P.-M. Ho, H.-C. Kao, Non-commutative quantum mechanics from non-commutative quantum field theory. Phys. Rev. Lett. 88, 151602 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Daszkiewicz, Quantum mechanics of many particles defined on twisted n-enlarged newton-hooke space-times. Acta Phys. Pol. B 44, 699 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. K.P. Gnatenko, Notationally invariant non-commutative phase space of canonical type with recovered weak equivalence principle. EPL (Europhys. Lett.) 123(5), 50002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Hydrogen atom spectrum and the lamb shift in non-commutative QED. Phys. Rev. Lett. 86, 2716 (2001)

    Article  ADS  Google Scholar 

  16. M. Chaichian, M.M. Sheikh-Jabbari, A. Tureanu, Comments on the hydrogen atom spectrum in the non-commutative space. Eur. Phys. J. C 36, 251 (2004)

    Article  ADS  Google Scholar 

  17. A. Stern, Non-commutative point sources. Phys. Rev. Lett. 100, 061601 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. Zaim, L. Khodja, Y. Delenda, Non-commutative of space-time and the relativistic hydrogen atom. J. Phys. Conf. Ser. 4350, 1 (2012)

    Google Scholar 

  19. T.C. Adorno, M.C. Baldiotti, M. Chaichian, D.M. Gitman, A. Tureanu, Dirac equation in non-commutative space for hydrogen atom. Phys. Lett. B 682, 235 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  20. S.A. Alavi, Lamb shift and stark effect in simultaneous space-space and momentum-momentum non-commutative quantum mechanics and \(\theta \)-deformed su (2) algebra. Mod. Phys. Lett. A 22, 377 (2007)

    Article  ADS  MATH  Google Scholar 

  21. Kh.P. Gnatenko, V.M. Tkachuk, Hydrogen atom in rotationally invariant non-commutative space. Phys. Lett. A 378, 3509 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kh.P. Gnatenko, Yu.S. Krynytskyi, V.M. Tkachuk, Perturbation of the ns energy levels of the hydrogen atom in rotationally invariant noncommutative space. Mod. Phys. Lett. A 30, 1550033 (2015)

    Article  ADS  MATH  Google Scholar 

  23. Kh.P. Gnatenko, Physical systems in a space with noncommutativity of coordinates. J. Phys. Conf. Ser. 670, 012023 (2016)

    Article  Google Scholar 

  24. A.P. Balachandran, A. Pinzul, On time-space non-commutativity for transition processes and non-commutative symmetries. Mod. Phys. Lett. A 20, 2023 (2005)

    Article  ADS  MATH  Google Scholar 

  25. J. Gamboa, M. Loewe, F. Mendez, J.C. Rojas, The landau problem and non-commutative quantum mechanics. Mod. Phys. Lett. A 16, 2075 (2001)

    Article  ADS  MATH  Google Scholar 

  26. P.A. Horvathy, The non-commutative landau problem. Ann. Phys. 299, 128 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. O.F. Dayi, L.T. Kelleyane, Wigner functions for the landau problem in non-commutative spaces. Mod. Phys. Lett. A 17, 1937 (2002)

    Article  ADS  MATH  Google Scholar 

  28. O. Bertolami, J.G. Rosa, C.M.L. de Aragao, P. Castorina, D. Zappala, Non- commutative gravitational quantum well. Phys. Rev. D 72, 025010 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  29. C. Bastos, O. Bertolami, Berry phase in the gravitational quantum well and the seiberg -witten map. Phys. Lett. A 372, 5556 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A.P. Balachandran, A. Ibort, G. Marmo, M. Martone, Quantum fields on non-commutative space times: theory and phenomenology. SIGMA 6, 052 (2010)

    MATH  Google Scholar 

  31. A.P. Balachandran, A. Ibort, G. Marmo, M. Martone, Covariant quantum fields on non-commutative space times. JHEP 1103, 057 (2011)

    Article  ADS  MATH  Google Scholar 

  32. Kh.P. Gnatenko, System of interacting harmonic oscillators in rotationally invariant non-commutative phase space. Phys. Lett. A 382, 3317 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kh.P. Gnatenko, V.M. Tkachuk, Weak equivalence principle in noncommutative phase space and the parameters of non-commutativity. Phys. Lett. A 381, 2463 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Kh.P. Gnatenko, V.M. Tkachuk, Two-particle system in non-commutative space with preserved rotational symmetry. Ukr. J. Phys. 61, 432 (2016)

    Article  Google Scholar 

  35. I. Jabbari, A. Jahan, Z. Riazi, Partition function of the harmonic oscillator on a non-commutative plane. Turk. J. Phys. 33, 149 (2009)

    Google Scholar 

  36. Kh.P. Gnatenko, V.M. Tkachuk, Two-particle system with harmonic oscillator interaction in non-commutative phase space. J. Phys. Stud. 21, 3001 (2017)

    Article  MathSciNet  Google Scholar 

  37. Kh.P. Gnatenko, Composite system in non-commutative space and the equivalence principle. Phys. Lett. A 377, 3061 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Kh.P. Gnatenko, H.P. Laba, V.M. Tkachuk, Features of free particles system motion in non-commutative phase space and conservation of the total momentum. Modern Phys. Lett. A 33(23), 1850131 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. J.M. Romero, J.D. Vergara, The Kepler problem and non-commutativity. Mod. Phys. Lett. A 18, 1673 (2003)

    Article  ADS  MATH  Google Scholar 

  40. B. Mirza, M. Dehghani, Noncommutative geometry and the classical orbits of particles in a central force potential. Commun. Theor. Phys. 42, 183 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. A.E.F. Djemai, On Noncommutative Classical Mechanics. Int. J. Theor. Phys. 43, 299 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  42. C. Quesne, V.M. Tkachuk, Composite system in deformed space with minimal length. Phys. Rev. A 81, 012106 (2010)

    Article  ADS  Google Scholar 

  43. S. Benczik, L.N. Chang, D. Minic, N. Okamura, S. Rayyan, T. Takeuchi, Short distance vs long distance physics: the classical limit of the minimal length uncertainty relation. Phys. Rev. D 66, 026003 (2002)

    Article  ADS  Google Scholar 

  44. V.M. Tkachuk, Deformed Heisenberg algebra with minimal length and equivalence principle. Phys. Rev. A 86, 062112 (2012)

    Article  ADS  Google Scholar 

  45. T. Curtight et al., Features of time-independent wigner functions. Phys. Rev. D 58, 025002 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  46. J.M. Romero, J.A. Santiago, J.D. Vergara, Newton’s second law in a non-commutative Space. Phys. Lett. A 310, 9 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. A.E.F. Djemai, H. Smail, On quantum mechanics on non-commutative quantum phase space. Commun. Theor. Phys. 41, 837 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. S. Bellucci, A. Yeranyan, Non-commutative quantum scattering in a central field. Phys. Lett. B 609, 418 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Kh.P. Gnatenko, Kinematic variables in non-commutative phase space and the parameters of non-commutativity. Mod. Phys. Lett. A 32, 1750166 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Kh.P. Gnatenko, V.M. Tkachuk, Composite system in rotationally invariant noncommutative phase space. Int. J. Mod. Phys. A 33, 1850037 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. F. Hoseini, M. Kai, H. Hassanabadi, Motion of a non-relativistic quantum particle in non-commutative phase space. Chin. Phys. Lett. 32(10), 100302 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for a thorough reading of our manuscript and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Panahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safaei, A.A., Panahi, H. & Hassanabadi, H. Two-Particle System with Harmonic Oscillator Potential in Non-commutative Phase Space. Few-Body Syst 63, 49 (2022). https://doi.org/10.1007/s00601-022-01747-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-022-01747-z

Navigation