Skip to main content
Log in

Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: Sensitivity analysis and optimization

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, a numerical study has been examined on the effect of the presence of a magnetic field on the rate of convective heat transfer and entropy generation of a hybrid nanofluid (water/Al2O3-CuO (50/50)) in a square diagonal cavity. The horizontal walls of the insulating cavity and fixed temperature source are set on the left and right vertical wall with cold temperature. The governing equations are solved by finite volume method using the SIMPLE algorithm. In this paper, the effect of the Richardson number, Hartman number, thermal source length on hybrid entropy generation and convective heat transfer rate has been examined. Using the Response Surface Methodology (RSM) method, a polynomial equation is obtained between the three parameters given for the Nusselt number, total entropy generation and Bejan number. Then the sensitivity of responses to factors is checked. Finally, depending on the importance of each of the responses, we use the optimal points where simultaneously the highest Nu number, the lowest entropy generation, and Bejan number occur. The results show that with increasing Richardson number, heat transfer rate is reduced, and this reduction is more pronounced in smaller Hartmann number. Also, total entropy generation increased with increasing Richardson number, but Bejan number reduced. With increasing the intensity of the magnetic field and reducing the length of the thermal source, the heat transfer rate also reduces. However, with increasing the intensity of the magnetic field, the total entropy generation and Bejan number increase. Also, with increasing the length of the thermal source, the total entropy generation and Bejan number increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Iwatsu, J.M. Hyun, K. Kuwahara, Int. J. Heat Mass Transf. 36, 1601 (1993)

    Article  Google Scholar 

  2. H.F. Oztop, I. Dagtekin, Int. J. Heat Mass Transf. 47, 1761 (2004)

    Article  Google Scholar 

  3. M.K. Moallemi, K.S. Jang, Int. J. Heat Mass Transf. 35, 1881 (1992)

    Article  Google Scholar 

  4. M.A.R. Sharif, Appl. Therm. Eng. 27, 1036 (2007)

    Article  Google Scholar 

  5. H.F. Oztop, K. Al-Salem, Renew. Sustain. Energy Rev. 16, 911 (2012)

    Article  Google Scholar 

  6. A.S. Kherbeet, H.A. Mohammed, K.M. Munisamy, B.H. Salman, Int. J. Heat Mass Transf. 68, 554 (2014)

    Article  Google Scholar 

  7. M. Yousaf, S. Usman, Int. J. Heat Mass Transf. 90, 180 (2015)

    Article  Google Scholar 

  8. Y. Liu, C. Lei, J.C. Patterson, Int. J. Heat Mass Transf. 72, 23 (2014)

    Article  Google Scholar 

  9. S. Ostrach, J. Heat Transf. 110, 1175 (1988)

    Article  Google Scholar 

  10. S. Aminossadati, B. Ghasemi, Eur. J. Mech. B Fluids 28, 630 (2009)

    Article  ADS  Google Scholar 

  11. G.R. Kefayati, S. Hosseinizadeh, M. Gorji, H. Sajjadi, Int. Commun. Heat Mass Transf. 38, 798 (2011)

    Article  Google Scholar 

  12. A.H. Pordanjani, S. Aghakhani, M. Afrand, B. Mahmoudi, O. Mahian, S. Wongwises, Energy Convers. Manag. 198, 111886 (2019)

    Article  Google Scholar 

  13. F.-H. Lai, Y.-T. Yang, Int. J. Therm. Sci. 50, 1930 (2011)

    Article  Google Scholar 

  14. K.C. Lin, A. Violi, Int. J. Heat Fluid Flow 31, 236 (2010)

    Article  Google Scholar 

  15. Y. Hu, Y. He, S. Wang, Q. Wang, H.I. Schlaberg, J. Heat Transf. 136, 022502 (2014)

    Article  Google Scholar 

  16. W. Zhou, Y. Yan, J. Xu, Int. Commun. Heat Mass Transf. 55, 113 (2014)

    Article  Google Scholar 

  17. Y. Hu, Y. He, C. Qi, B. Jiang, H.I. Schlaberg, Int. J. Heat Mass Transf. 78, 380 (2014)

    Article  Google Scholar 

  18. A.K. Santra, S. Sen, N. Chakraborty, Int. J. Therm. Sci. 47, 1113 (2008)

    Article  Google Scholar 

  19. A.H. Pordanjani, S. Aghakhani, A. Karimipour, M. Afrand, M. Goodarzi, J. Therm. Anal. Calorim. 137, 9977 (2019)

    Google Scholar 

  20. S. Rashidi, O. Mahian, E.M. Languri, J. Therm. Anal. Calorim. 131, 2027 (2018)

    Article  Google Scholar 

  21. J. Sarkar, Renew. Sustain. Energy Rev. 15, 3271 (2011)

    Article  Google Scholar 

  22. S. Kakaç, A. Pramuanjaroenkij, Int. J. Heat Mass Transf. 52, 3187 (2009)

    Article  Google Scholar 

  23. M. Hemmat Esfe, F. Ghadak, A. Haghiri, S.S. Mir-Talebi, Aerosp. Mech. J. 8, 69 (2012)

    Google Scholar 

  24. M. Kalteh, K. Javaherdeh, T. Azarbarzin, Powder Technol. 253, 780 (2014)

    Article  Google Scholar 

  25. M. Shahi, A.H. Mahmoudi, F. Talebi, Int. Commun. Heat Mass Transf. 37, 201 (2010)

    Article  Google Scholar 

  26. Mojumder Satyajit, Saha Sourav, Saha Sumon, M.A.H. Mamun, J. Hydrodyn. 27, 782 (2015)

    Article  ADS  Google Scholar 

  27. M. Bahiraei, M. Hangi, J. Magn. Magn. Mater. 374, 125 (2015)

    Article  ADS  Google Scholar 

  28. I. Nkurikiyimfura, Y. Wang, Z. Pan, Renew. Sustain. Energy Rev. 21, 548 (2013)

    Article  Google Scholar 

  29. S. Odenbach, Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids (Springer, 2009)

  30. A.H. Pordanjani, S. Aghakhani, A.A. Alnaqi, M. Afrand, Int. J. Mech. Sci. 152, 99 (2019)

    Article  Google Scholar 

  31. F. Selimefendigil, H.F. Öztop, J. Taiwan Inst. Chem. Eng. 45, 2150 (2014)

    Article  Google Scholar 

  32. A.H. Pordanjani, A. Jahanbakhshi, A. Ahmadi Nadooshan, M. Afrand, Int. J. Heat Mass Transf. 121, 565 (2018)

    Article  Google Scholar 

  33. M. Sheikholeslami, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 43 (2016)

    Article  Google Scholar 

  34. H.M. Elshehabey, S.E. Ahmed, Int. J. Heat Mass Transf. 88, 181 (2015)

    Article  Google Scholar 

  35. G.R. Kefayati, M. Gorji-Bandpy, H. Sajjadi, D.D. Ganji, Sci. Iran. 19, 1053 (2012)

    Article  Google Scholar 

  36. H.F. Oztop, K. Al-Salem, I. Pop, Int. J. Heat Mass Transf. 54, 3494 (2011)

    Article  Google Scholar 

  37. F. Selimefendigil, H.F. Öztop, Int. J. Heat Mass Transf. 78, 741 (2014)

    Article  Google Scholar 

  38. F. Talebi, A.H. Mahmoudi, M. Shahi, Int. Commun. Heat Mass Transf. 37, 79 (2010)

    Article  Google Scholar 

  39. M.M. Rahman, R. Saidur, N.A. Rahim, Int. J. Heat Mass Transf. 54, 3201 (2011)

    Article  Google Scholar 

  40. Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach, in Sea, Vol. 1000 (2002) pp. 8862

  41. A. Bejan, Energy 5, 720 (1980)

    Article  ADS  Google Scholar 

  42. H.F. Oztop, K. Al-Salem, Renew. Sustain. Energy Rev. 16, 911 (2012)

    Article  Google Scholar 

  43. M. Shahi, A.H. Mahmoudi, A.H. Raouf, Int. Commun. Heat Mass Transf. 38, 972 (2011)

    Article  Google Scholar 

  44. R.K. Nayak, S. Bhattacharyya, I. Pop, Int. J. Heat Mass Transf. 102, 596 (2016)

    Article  Google Scholar 

  45. Cha’o-Kuang Chen, Bo-Shiuan Chen, Chin-Chia Liu, Int. J. Heat Mass Transf. 79, 750 (2014)

    Article  Google Scholar 

  46. F. Selimefendigil, H.F. Oztop, A.J. Chamkha, J. Magn. Magn. Mater. 406, 266 (2016)

    Article  ADS  Google Scholar 

  47. J.C. Maxwell, A Treatise on Electricity and Magnetism (Clarendon Press, 1881)

  48. H. Brinkman, J. Chem. Phys. 20, 571 (1952)

    Article  ADS  Google Scholar 

  49. H.R. Ashorynejad, A. Shahriari, Results Phys. 9, 440 (2018)

    Article  ADS  Google Scholar 

  50. W.-S. Han, S.-H. Rhi, Therm. Sci. 15, 195 (2011)

    Article  Google Scholar 

  51. D. Kamble, P. Gadhave, A. Ma, Int. J. Eng. Trends Technol. 17, 1 (2014)

    Article  Google Scholar 

  52. R. Ramachandran, K. Ganesan, M. Rajkumar, L. Asirvatham, S. Wongwises, Int. Commun. Heat Mass Transf. 76, 294 (2016)

    Article  Google Scholar 

  53. S. Senthilraja, K. Vijayakumar, R. Gangadevi, Dig. J. Nanomater. Biostruct. 10, 1449 (2015)

    Google Scholar 

  54. M.S. Tahat, A.C. Benim, Defect Diffus. Forum 374, 148 (2017)

    Article  Google Scholar 

  55. S. Patankar, Numerical Heat Transfer and Fluid Flow (CRC Press, 1980)

  56. E. Abedini, T. Zarei, M. Afrand, S. Wongwises, J. Mol. Liq. 231, 11 (2017)

    Article  Google Scholar 

  57. M. Afrand, Int. J. Therm. Sci. 118, 12 (2017)

    Article  Google Scholar 

  58. M. Afrand, S. Farahat, A.H. Nezhad, G. Ali Sheikhzadeh, F. Sarhaddi, Int. J. Appl. Electromagn. Mech. 46, 809 (2014)

    Article  Google Scholar 

  59. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transf. Res. 45, 749 (2014)

    Article  Google Scholar 

  60. M. Afrand, S. Farahat, A.H. Nezhad, G.A. Sheikhzadeh, F. Sarhaddi, Heat Transf. Res. 45, 749 (2014)

    Article  Google Scholar 

  61. M. Afrand, N. Sina, H. Teimouri, A. Mazaheri, M.R. Safaei, M.H. Esfe, J. Kamali, D. Toghraie, Int. J. Appl. Mech. 7, 1550052 (2015)

    Article  Google Scholar 

  62. A.J. Ahmad Hajatzadeh Pordanjani, Afshin Ahmadi Nadooshan, Masoud Afrand, Int. J. Heat Mass Transf. 121, 565 (2018)

    Article  Google Scholar 

  63. M.A. Ali Karimi, Energy Convers. Manag. 164, 615 (2018)

    Article  Google Scholar 

  64. H. Teimouri, G.A. Sheikhzadeh, M. Afrand, M.M. Fakhari, J. Mol. Liq. 227, 114 (2017)

    Article  Google Scholar 

  65. E. Abu-Nada, A.J. Chamkha, Eur. J. Mech. B Fluids 29, 472 (2012)

    Article  Google Scholar 

  66. M.A. Waheed, Int. J. Heat Mass Transf. 52, 5055 (2009)

    Article  Google Scholar 

  67. R.K. Tiwari, M.K. Das, Int. J. Heat Mass Transf. 50, 2002 (2007)

    Article  Google Scholar 

  68. M.H. Esfe, M. Akbari, A. Karimipour, Masoud Afrand, O. Mahian, S. Wongwises, Int. J. Heat Mass Transf. 85, 656 (2015)

    Article  Google Scholar 

  69. S. Rashidi, M. Bovand, J.A. Esfahani, Desalination 395, 79 (2016)

    Article  Google Scholar 

  70. S. Rashidi, M. Bovand, J.A. Esfahani, Energy 88, 385 (2015)

    Article  Google Scholar 

  71. S. Vahedi, A.Z. Ghadi, M. Valipour, J. Mech. 34, 695 (2018)

    Article  Google Scholar 

  72. A.H. Pordanjani, S.M. Vahedi, F. Rikhtegar, S. Wongwises, J. Therm. Anal. Calorim. 135, 1031 (2019)

    Article  Google Scholar 

  73. S.M. Vahedi, A.H. Pordanjani, A. Raisi, A.J. Chamkha, Eur. Phys. J. Plus 134, 124 (2019)

    Article  Google Scholar 

  74. S.M. Vahedi, A.H. Pordanjani, S. Wongwises, M. Afrand, J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-019-08224-6

  75. M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakan F. Öztop.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pordanjani, A.H., Vahedi, S.M., Aghakhani, S. et al. Effect of magnetic field on mixed convection and entropy generation of hybrid nanofluid in an inclined enclosure: Sensitivity analysis and optimization. Eur. Phys. J. Plus 134, 412 (2019). https://doi.org/10.1140/epjp/i2019-12763-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12763-2

Navigation