Skip to main content
Log in

Hybrid Nanofluid Unsteady MHD Natural Convection in an Inclined Wavy Porous Enclosure with Radiation Effect, Partial Heater and Heat Generation/Absorption

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this study, the flow and heat transfer components of convection are numerically investigated in a hybrid nanofluid-filled, porous-medium enclosure with wavy walls. The flow is considered to be buoyancy-driven under a constant inclined magnetic field and heat radiation (Rd). The cavity is partially heated from its left wall and is cooled by its wave-like right wall while the other walls are adiabatic. To express the results, streamlines, isothermal, and the Nu are used. Analysis is done to determine how heat transfer is affected by thermal radiation (Rd), the Hartmann number Ha, the inclined magnetic field, the left heater’s dimensionless location (D), the heat source’s dimensionless length (B), and the hybrid nanofluid’s volume fraction. The average Nusselt number is increased when the volume friction of hybrid nanofluids increases. Additionally, as the dimensionless heat source length B rises, the rate of heat generation rises as well, enhancing the buoyancy force while reducing the impact of shear-driven force. The left heater’s dimensionless position, D = 0.7, exhibits the largest local Nu in contrast to other occurrences. It was found that the minimum Nu occurred at the heat generation/absorption coefficient Q = − 8 at the lowest wall of the enclosure because the intensity of the isothermal formed at the upper wall of the enclosure was greater than that at the bottom of the enclosure in comparison to other cases. The results also showed that, due to the irreversibility of magnetic force, which is one of the main processes for heat transmission, isentropic lines diffuse toward the interior of the enclosure as porosity decreases. On the surface of the enclosure’s vertical left wall (Y-axis at X = 0), the Nu shows as symmetrical profiles, and it can be seen that the Nu increases as the wave length of the wavy walls diminishes. The effects of the Hartmann number and Darcy number on streamlines and isothermal temperature are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic field strength (m)

b :

Heat source length (m)

B :

Dimensionless heat source length

Da:

Darcy number (= K/h2)

H :

Length of cavity (m)

Nus :

Local Nusselt number (W/m2/K)

\({\text{Nu}}_{m}\) :

Average Nusselt number of heat source (W/m2/K)

\(p\) :

Fluid pressure (Pa)

u, v :

Velocity components in x, y directions (ms1)

\(P\) :

Dimensionless pressure \(( = p\,H/\rho_{{{\text{nf}}}} \alpha_{f}^{2} )\)

\(\Pr\) :

Prandtl number \(( = \upsilon_{f} /\alpha_{f} )\)

\(x,y\) :

Cartesian coordinates (m)

Rd:

Thermal radiation

Ha:

Hartmann number (\(B_{0} H\,\sqrt {\sigma_{f} /\rho_{f} \nu_{f} }\))

T :

Temperature (K)

T C :

Cold wall temperature (K)

\(U,V\) :

Dimensionless velocity components \(( = \left( {u,v} \right)H/\alpha_{f} )\)

X, Y :

Dimensionless coordinates (x/H, y/H)

\(C_{{\text{p}}}\) :

Specific heat at constant pressure \(({\text{J}}\;{\text{kg}}\;{\text{K}}^{ - 1} )\)

T h :

Heated wall temperature (K)

Ra:

Rayleigh number \(( = g\beta_{f} \left( {T_{{\text{h}}} - T_{{\text{c}}} } \right)H^{3} /\alpha_{f} \nu_{f} )\)

g :

Acceleration due to gravity (m s2)

\(k\) :

Thermal conductivity (Wm1 K1)

k*:

The mean absorption coefficient

K :

Permeability of porous medium

\(\beta\) :

Thermal expansion coefficient (K1)

\(\mu\) :

Dynamic viscosity (Ns m2)

\(\theta\) :

Dimensionless temperature (T−Tc)/(Th-Tc)

\(\phi\) :

Solid volume fraction

\(\rho\) :

Density (kg m3)

\(\alpha\) :

Thermal diffusivity (\(( = k/\rho \,c_{p} ),{\text{m}}^{2} \;{\text{s}}^{ - 1}\)

\(\sigma\) :

Effective electrical conductivity \((\upmu \,{\text{S}}/{\text{cm}})\)

\(\sigma *\) :

Stephan–Boltzman constant

\(\tau\) :

Dimensionless time parameter

\(\nu\) :

Kinematic viscosity \(({\text{m}}^{2} \;{\text{s}}^{ - 1} )\)

p :

Nanoparticle

\(m\) :

Average

\(f\) :

Pure fluid

\(h\) :

Hot

\({\text{hnf}}\) :

Hybrid Nanofluid

\(c\) :

Cold

\({\text{nf}}\) :

Nanofluid

References

  • Abbassi MA, Orfi J (2018) Effects of magnetohydrodynamics on natural convection and entropy generation with nanofluids. J Thermophys Heat Transf 32(4):1059–1071

    Article  CAS  Google Scholar 

  • Adjlout L, Imine O, Azzi A, Belkadi M (2002) Laminar natural convection in an inclined cavity with a wavy wall. Int J Heat Mass Transf 45:2141–2152

    Article  Google Scholar 

  • Ahmed SE, Bala ARP, Jakeer S, Rashad AM, Salah T (2023) Magnetic convection-radiation interaction in wavy porous triangular containers using hybrid nanofluids: entropy analysis. J Porous Media 26(5):79–99

    Article  Google Scholar 

  • Aminossadati SM, Ghasemi B (2009) Natural convection cooling of a localized heat source at the bottom of a nanofluid-filled enclosure. Eur J Mech B/Fluid 28:630–640

    Article  Google Scholar 

  • Atashafrooz M, Sajjadi H, Amiri Delouei A (2020) Interacting influences of Lorentz force and bleeding on the hydrothermal behaviors of nanofluid flow in a trapezoidal recess with the second law of thermodynamics analysis. Int Commun Heat Mass Transfer 110:104411

    Article  CAS  Google Scholar 

  • Atashafrooz M, Sajjadi H, Amiri Delouei A, Yang T-F, Yan W-M (2021) Three-dimensional analysis of entropy generation for forced convection over an inclined step with presence of solid nanoparticles and magnetic force. Numer Heat Transf Part A Appl Int J Comput Methodol 80(6):1–18

    Google Scholar 

  • Atashafrooz M, Sajjadi H, Delouei AA (2023) Simulation of combined convective-radiative heat transfer of hybrid nanofluid flow inside an open trapezoidal enclosure considering the magnetic force impacts. J Magn Magn Mater 567:170354

    Article  CAS  Google Scholar 

  • Azimi M, Riazi R (2016) MHD copper–water nanofluid flow and heat transfer through convergent-divergent channel. J Mech Sci Technol 30:4679–4686

    Article  Google Scholar 

  • Bouabid M, Magherbi M, Hidouri N, Brahim AB (2011) Entropy generation at natural convection in an inclined rectangular cavity. Entropy 13:1020–1033

    Article  ADS  CAS  Google Scholar 

  • Brinkman HC (1952) The viscosity of concentrated suspensions and solution. J Chem Phys 20:571–581

    Article  ADS  CAS  Google Scholar 

  • Chamkha AJ (2004) Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving plate with heat absorption. Int J Eng Sci 42:217–230

    Article  Google Scholar 

  • Chamkha AJ, Rashad AM, Armaghani T, Mansour MA (2018) Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim 132(2):1291–1306

    Article  CAS  Google Scholar 

  • Ding M, Chen G, Xu W, Jia C, Luo H (2020) Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater Sci 2(3):264–280

    Article  ADS  Google Scholar 

  • Ellahi R, Sait SM, Shehzad N, Ayaz Z (2020) A hybrid investigation on numerical and analytical solutions of electro-magnetohydrodynamics flow of nanofluid through porous media with entropy generation. Int J Numer Meth Heat Fluid Flow 30(2):834–854

    Article  Google Scholar 

  • Gangawane KM, Oztop HF, Abu-Hamdeh N (2018) Mixed convection characteristic in a lid driven cavity containing heated triangular block: effect of position and size of block. Int J Heat Mass Transf 124:860–875

    Article  Google Scholar 

  • Ghalambaz M, Sheremet MA, Pop I (2015) Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das’ nanofluid model. PLoS ONE 10(5):e0126486

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghasemi K, Siavashi M (2017) MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater 442(15):474–490

    Article  ADS  CAS  Google Scholar 

  • Hag G, Curt S, Wang K, Markides C (2020) Challenges and opportunities for nanomaterials in spectral splitting for high performance hybrid solar photovoltaic thermal applications: a review. Nano Mater Sci 2(3):183–204

    Article  Google Scholar 

  • Ho CJ, Huang JB, Tsai PS, Yang YM (2010) Preparation and properties of hybrid water based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int Commun Heat Mass Transf 37:490–494

    Article  CAS  Google Scholar 

  • Hussain S, Tayebi T, Armaghani T, Rashad AM, Nabwey HA (2022) Conjugate natural convection of non-Newtonian hybrid nanofluid in wavy-shaped enclosure. Appl Math Mech 43(3):447–466

    Article  MathSciNet  Google Scholar 

  • Jakeer S, Bala ARP, Mansour MA, Rashad AM (2022) Characteristics of moving hot block and non-Fourier heat flux model on sinusoidal wavy cavity filled with hybrid nanofluid. Eur Phys J Plus 137:131

    Article  Google Scholar 

  • Jan S, Khojin AS, Zhong WH (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462:45–55

    Article  Google Scholar 

  • Khanafer K, Vafai K, Lighstone M (2003) Buoyancy driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46:3639–3653

    Article  CAS  Google Scholar 

  • Magherbi M, Abbasi H, Brahim AB (2008) Entropy generation at the onset of natural convection. Int J Heat Mass Transf 46:3441–3450

    Article  Google Scholar 

  • Mahmud S, Das PK, Hyder N, Sadrul Islam AKM (2002) Free convection in an enclosure with vertical wavy walls. Int J Therm Sci 41:440–446

    Article  Google Scholar 

  • Manchanda M, Gangawane KM (2018) Mixed convection in a two-sided lid-driven cavity containing heated triangular block for non-Newtonian power-law fluids. Int J Mech Sci 144:235–248

    Article  Google Scholar 

  • Mansour MA, El-Shaer NA (2002) Effect of magnetic field on non-Darcy axisymmetric free convection in a power-law fluid saturated porous medium with variable permeability. J Magn Magn Mater 250:57–64

    Article  ADS  CAS  Google Scholar 

  • Mansour MA, Ahmed SE, Aly AM, Rashad AM (2016) MHD effects on entropy generation and heat transfer of nanofluid flows in enclosures. J Nanofluids 5(4):595–605

    Article  Google Scholar 

  • Mansour MA, Ahmed SE, Chamkha AJ (2017) Entropy generation optimization for MHD natural convection of a nanofluid in porous media-filled enclosure with active parts and viscous dissipation. Int J Numer Methods Heat Fluid Flow 27(2):379–399

    Article  Google Scholar 

  • Mejri I, Mahmoudi A, Abbassi MA, Omri A (2014) Magnetic field effect on entropy generation in a nanofluid-filled enclosure with sinusoidal heating on both side walls. Powder Technol 266:340–353

    Article  CAS  Google Scholar 

  • Misirlioglu A, Baytas AC, Pop I (2005) Free convection in a wavy cavity filled with a porous medium. Int J Heat Mass Transf 48:1840–1850

    Article  Google Scholar 

  • Murthy SVSSN, Rathish Kumar BV, Kumar V (2018) Numerical modeling and simulation of natural-convection boundary-layer flow along a vertical wavy surface in a doubly stratified non-Darcian porous medium with Soret and Dufour effects. Heat Transf Res 49(18):1849–1865

    Article  Google Scholar 

  • Muthtamilselvan M, Periyadurai K, Doh DH (2017) Effect of uniform and nonuniform heat source on natural convection flow of micropolar fluid. Int J Heat Mass Transf 115:19–34

    Article  Google Scholar 

  • Muthtamilselvan M, Periyadurai K, Doh DH (2018) Impact of nonuniform heated plate on double-diffusive natural convection of micropolar fluid in a square cavity with Soret and Dufour effects. Adv Powder Technol 29:66–77

    Article  CAS  Google Scholar 

  • Pirmohammadi M, Ghassemi M (2009) Effect of magnetic field on convection heat transfer inside a tilted square enclosure. Int Commun Heat Mass Transf 36:776–780

    Article  CAS  Google Scholar 

  • Raizah Z, Abdelraheem MA, Alsedais N, Mansour AA (2021) MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition. Sci Rep 11:17151

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Revnic C, Ghalambaz M, Grosan T, Sheremet M, Pop I (2019) Impacts of non-uniform border temperature variations on time-dependent nanofluid free convection within a trapezium: Buongiorno’s nanofluid model. Energies 12(8):1461

    Article  CAS  Google Scholar 

  • Riaz A, Ellahi R, Sait SM (2021) Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model. J Therm Anal Calorim 143:1021–1035

    Article  CAS  Google Scholar 

  • Sajjadi H, Amiri Delouei A, Atashafrooz M (2023) Effect of magnetic field on particle deposition in a modeled room. Part Sci Technol Int J 3(41):361–370

    Article  Google Scholar 

  • Saravanan S, Sivaraj C (2015) Combined natural convection and thermal radiation in a square cavity with a nonuniformly heated plate. Comput Fluids 117:125–138

    Article  MathSciNet  Google Scholar 

  • Saravanan S, Sivaraj C (2017) Combined thermal radiation and natural convection in a cavity containing a discrete heater: effects of nature of heating and heater aspect ratio. Int J Heat Fluid Flow 66:70–82

    Article  Google Scholar 

  • Sathiyamoorthy M, Chamkha AJ (2010) Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side walls. Int J Therm Sci 49:1856–1865

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Li Z, Shamlooei M (2018) Nanofluid MHD natural convection through a porous complex shaped cavity considering thermal radiation. Phys Lett A 382:1615–1632

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Sivaraj C, Sheremet MA (2016) Natural convection coupled with thermal radiation in a square porous cavity having a heated plate inside. Transp Porous Media 114:843–857

    Article  MathSciNet  CAS  Google Scholar 

  • Tahmasebi A, Mahdavi M, Ghalambaz M (2018) Local thermal nonequilibrium conjugate natural convection heat transfer of nanofluids in a cavity partially filled with porous media using Buongiorno’s model. Numer Heat Transf Part A Appl 73(4):254–276

    Article  ADS  CAS  Google Scholar 

  • Yan WM, Teng HY, Li CH, Ghalambaz M (2019) Electromagnetic field analysis and cooling system design for high power switched reluctance motor. Int J Numer Meth Heat Fluid Flow 29(5):1756–1785

    Article  Google Scholar 

  • Yilbas BS, Shuja SZ, Gbadebo SA, Al-Hamayel HA, Boran KU (1998) Natural convection and entropy generation in a square cavity. Int J Energy Res 22:1275–1290

    Article  Google Scholar 

  • Yu Q, Xu H (2018) Novel wavelet-homotopy Galerkin technique for analysis of lid-driven cavity flow and heat transfer with non-uniform boundary conditions. Appl Math Mech 39:1691–1718

    Article  MathSciNet  Google Scholar 

  • Zaraki A, Ghalambaz M, Chamkha AJ, Ghalambaz M, De Rossi D (2015) Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol 26(3):935–946

    Article  CAS  Google Scholar 

  • Zhu M, Zhu F, Schmit O (2021) Nano energy for miniaturized system. Nano Mater Sci 3(2):107–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Armaghani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armaghani, T., Rashad, A.M., Togun, H. et al. Hybrid Nanofluid Unsteady MHD Natural Convection in an Inclined Wavy Porous Enclosure with Radiation Effect, Partial Heater and Heat Generation/Absorption. Iran J Sci Technol Trans Mech Eng (2024). https://doi.org/10.1007/s40997-023-00720-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-023-00720-3

Keywords

Navigation