Skip to main content
Log in

Investigation of viscous dissipation in the nanofluid flow with a Forchheimer porous medium: Modern transportation of heat and mass

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this article, the motion of a viscous nanofluid over a shrinking/stretching sheet is analyzed. This study also focuses on the non-Darcian transport in the stagnation-point flow of a nanofluid. The nanofluid consists of Brownian motion and thermophoresis effects. A magnetic field is applied in the vertical direction under the assumption of low magnetic Reynolds number. The Cattaneo-Christov phenomenon is incorporated to investigate the characteristics of heat and mass transfer. The characteristics of heat transfer are evaluated for the first time by utilizing the viscous dissipation with the Cattaneo-Christov theory. The equations (PDEs) governing the flow, heat and mass transport are first derived and then transformed into the corresponding ordinary differential equations via using similarity solutions. A homotopic proceduce is addressed to obtain the solutions for the accomplished ordinary differential equations. The variation of the divergent involved parameters on the fluid temperature, velocity and concentration distributions is disclosed through graphs and analyzed in detail. The features of the skin friction coefficient is graphed in order to understand the flow processes. It is noted that an increase in the Darcy number results in the decrease in the velocity field. Further impacts of Brownian diffusion and Eckert number on the temperature are quite similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U.S. Choi, J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in The Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME, 1995) pp. 99--105

  2. T. Hayat, T. Muhammad, A. Alsaedi, B. Ahmad, Results Phys. 6, 897 (2016)

    Article  ADS  Google Scholar 

  3. N. Muhammad, S. Nadeem, T. Mustafa, Results Phys. 7, 862 (2017)

    Article  ADS  Google Scholar 

  4. L. Ahmad, M. Khan, W.A. Khan, Eur. Phys. J. Plus 132, 373 (2017)

    Article  Google Scholar 

  5. T. Hayat, S. Qayyum, S. Shehzad, A. Alsaedi, Results Phys. 7, 4145 (2017)

    Article  ADS  Google Scholar 

  6. Hashim, M. Khan, Sharjeel, U. Khan, J. Mol. Liq. 272, 787 (2018)

    Article  Google Scholar 

  7. M. Khan, H. Sardar, Hashim, J. Mol. Liq. 272, 474 (2018)

    Article  Google Scholar 

  8. I. Uddin, M.A. Khan, S. Ullah, S. Islam, M. Israr, F. Hussain, Results Phys. 8, 160 (2018)

    Article  ADS  Google Scholar 

  9. J.H. Merkin, N. Najib, N. Bachok, A. Ishak, I. Pop, J. Taiwan Inst. Chem. Eng. 74, 65 (2017)

    Article  Google Scholar 

  10. T.M. Agbaje, S. Mondal, Z.G. Makukula, S.S. Motsa, P. Sibanda, Ain Shams Eng. J. 9, 233 (2018)

    Article  Google Scholar 

  11. T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, M. Farooq, Comput. Methods Appl. Mech. Eng. 315, 1011 (2017)

    Article  ADS  Google Scholar 

  12. R. Kumar, S. Sood, S.A. Shehzad, M. Sheikholeslami, Results Phys. 7, 3325 (2017)

    Article  ADS  Google Scholar 

  13. P. Weidman, M.R. Turner, Eur. J. Mech.-B/Fluids 61, 144 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Hamid, Hashim, M. Khan, Abdul Hafeez, Int. J. Heat Mass Transfer 126, 933 (2018)

    Article  Google Scholar 

  15. M.M. Bhatti, M.A. Abbas, M.M. Rashidi, Appl. Math. Comput. 316, 381 (2018)

    MathSciNet  Google Scholar 

  16. D. Lu, M. Ramzan, M. Bilal, J.D. Chung, U. Farooq, Commun. Theor. Phys. 70, 071 (2018)

    Article  ADS  Google Scholar 

  17. P. Forchheimer, Z. Ver. Deutsch. Ing. 45, 1782 (1901)

    Google Scholar 

  18. T. Hayat, T. Muhammad, S. Al-Mezal, S.J. Liao, Int. J. Numer. Methods Heat Fluid Flow 26, 2355 (2016)

    Article  Google Scholar 

  19. T. Hayat, F. Haider, T. Muhammad, A. Alsaedi, Int. J. Heat Mass Transfer 112, 248 (2017)

    Article  Google Scholar 

  20. M.I. Khan, T. Hayat, A. Alsaedi, Results Phys. 7, 2644 (2017)

    Article  ADS  Google Scholar 

  21. D. Srinivasacharya, P.V. Kumar, Propuls. Power Res. 7, 147 (2018)

    Article  Google Scholar 

  22. C.J. Huang, Int. J. Therm. Sci. 130, 256 (2018)

    Article  Google Scholar 

  23. C. Cattaneo, Atti Sem. Mat. Fis. Univ. Modena 3, 83 (1948)

    Google Scholar 

  24. C.I. Christov, Mech. Res. Commun. 36, 481 (2009)

    Article  Google Scholar 

  25. N. Muhammad, S. Nadeem, T. Mustafa, Results Phys. 7, 862 (2017)

    Article  ADS  Google Scholar 

  26. R. Malik, M. Khan, A. Shafiq, M. Mushtaq, M. Hussain, Results Phys. 7, 1232 (2017)

    Article  ADS  Google Scholar 

  27. T. Hayat, F. Haider, T. Muhammad, A. Alsaedi, Results Phys. 7, 2663 (2017)

    Article  ADS  Google Scholar 

  28. M. Waqas, T. Hayat, S.A. Shehzad, A. Alsaedi, Results Phys. 8, 908 (2018)

    Article  ADS  Google Scholar 

  29. R. Malik, M. Khan, Results Phys. 8, 64 (2018)

    Article  ADS  Google Scholar 

  30. A. Naseem, A. Shafiq, L. Zhao, M.U. Farooq, Results Phys. 9, 961 (2018)

    Article  ADS  Google Scholar 

  31. M. Khan, A. Shahid, M.Y. Malik, T. Salahuddin, J. Mol. Liq. 251, 7 (2018)

    Article  Google Scholar 

  32. S.J. Liao, Homotopy Analysis Method in Non-Linear Differential Equations (Springer and Higher Education Press, Heidelberg, 2012)

  33. S.J. Liao, Advances in the Homotopy Analysis Method (World Scientific, 2014)

  34. N.A. Demekhina, G.S. Karapetyan, V. Guimarães, Eur. Phys. J. Plus 128, 28 (2013)

    Article  Google Scholar 

  35. T. Hayat, A. Naseem, M. Farooq, A. Alsaedi, Eur. Phys. J. Plus 128, 158 (2013)

    Article  Google Scholar 

  36. J. Sui, L. Zheng, X. Zhang, G. Chen, Int. J. Heat Mass Transfer 85, 1023 (2015)

    Article  Google Scholar 

  37. M. Waqas, T. Hayat, M. Farooq, S.A. Shehzad, A. Alsaedi, J. Mol. Liq. 220, 642 (2016)

    Article  Google Scholar 

  38. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Results Phys. 7, 126 (2017)

    Article  ADS  Google Scholar 

  39. T. Hayat, M. Javed, M. Imtiaz, A. Alsaedi, Eur. Phys. J. Plus 132, 146 (2017)

    Article  Google Scholar 

  40. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Colloids Surf. A: Physicochem. Eng. Aspects 539, 335 (2018)

    Article  Google Scholar 

  41. M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Int. Commun. Heat Mass Transfer 91, 216 (2018)

    Article  Google Scholar 

  42. T.R. Mahapatra, A. Gupta, Heat Mass Transf. 38, 517 (2002)

    Article  ADS  Google Scholar 

  43. S. Pop, T. Grosan, I. Pop, Tech. Mech. 25, 100 (2004)

    Google Scholar 

  44. P. Sharma, G. Singh, J. Appl. Fluid Mech. 2, 13 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Masood.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, S., Farooq, M., Ahmad, S. et al. Investigation of viscous dissipation in the nanofluid flow with a Forchheimer porous medium: Modern transportation of heat and mass. Eur. Phys. J. Plus 134, 178 (2019). https://doi.org/10.1140/epjp/i2019-12519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12519-0

Navigation