Skip to main content
Log in

Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The current investigation scrutinized the incompressible steady flow with temperature-dependent viscosity of magnetohydrodynamics nanofluid through a vertically stretched porous sheet. The Reynolds exponential model is employed to formulate the mathematical modeling. The momentum equation is further devised utilizing the Darcy–Brinkman–Forchheimer model. Electrically conducting nanofluids encompass uniformly suspended nanoparticles in the viscous base fluid. The Buongiorno model is adopted that aspects the behavior of thermophoretic forces and Brownian motion. The momentum, mass conservative, energy, and nanoparticle concentration equations are defined with magnetic body force. The looming nonlinear coupled differential equations are resolved numerically by employing the spectral local linearization method (SLLM). The SLLM algorithm is straightforward to develop and apply, as it is based on a smooth univariant linearization of nonlinear functions. The numerical performance of SLLM is more impressive as it grows a set of equations; those are successively solved by operating the results from the one equation into the subsequent equation. To accelerate and improve the convergence for the SLLM scheme, the successive over relaxation scheme has been utilized. The accuracy of the SLLM will be confirmed through the known methods, and convergence analysis is also presented. Graphical conduct for all the emerging parameters across temperature, velocity, and concentration distributions, as well as the Nusselt number, skin friction, and Sherwood number, is presented and discussed in detail. A comparative study of the novel proposed technique along with the preceding explored literature is also granted. It is costly to affirm that the spectral local linearization scheme is uncovered to be much stable and adaptable to solve the nonlinear problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\( B_{0} \) :

Magnetic field

\( U,V \) :

Components of velocity

\( \kappa \) :

Thermal conductivity

\( D_{\text{T}} \) :

Thermophoretic coefficient

\( \bar{x},\bar{y} \) :

Cartesian coordinates along the surface

\( S_{\text{c}} \) :

Schmidt number

\( E \) :

Activation energy parameter

\( M \) :

Magnetic field parameter

\( \bar{g} \) :

Gravity

\( T_{\text{w}} \) :

Temperature at the wall

\( T_{\infty } \) :

Ambient temperature

\( \theta \) :

Dimensionless temperature profile

\( \phi \) :

Concentration profile

\( C_{\text{w}} \) :

Concentration at the wall

\( C_{\infty } \) :

Ambient concentration

\( \sigma \) :

Electrical conductivity

\( D_{\text{B}} \) :

Brownian diffusion coefficient

\( f \) :

Dimensionless stream function

\( {\text{Nu}}_{{{\bar{\text{x}}}}} \) :

Nusselt number

\( {\text{Sh}}_{{{\bar{\text{x}}}}} \) :

Sherwood number

\( C_{\text{F}} \) :

Forchheimer coefficient

\( m \) :

Dimensionless exponent

\( \beta_{\text{T}} \) :

Coefficient of thermal expansion

\( \alpha_{0} \) :

Variable viscosity parameter

\( P_{\text{r}} \) :

Prandtl number

\( C \) :

Nanoparticle concentration

\( \beta_{\text{C}} \) :

Coefficient of concentration expansion

\( N_{\text{t}} \) :

Thermophoresis parameter

\( \sigma_{1} \) :

Chemical reaction parameter

\( N_{\text{b}} \) :

Brownian motion parameter

\( B_{\text{r}} ,G_{\text{r}} \) :

Thermal and concentration Grashof numbers

\( \beta_{\text{D}} \) :

Dimensionless permeability parameter

d :

Constant

\( \nu \) :

Kinematic viscosity

ρ :

Density

\( k_{0} \) :

Boltzmann constant

\( \mu_{0} \) :

Viscosity at reference temperature

\( \text{Re}_{{{\bar{\text{x}}}}} \) :

Local Reynolds number

\( q_{w} , q_{m} \) :

Local heat and mass fluxes

\( C_{{{\text{f}}\bar{x}}} \) :

Skin friction coefficient

\( \tau_{\text{w}} \) :

Shear stress

References

  1. Peng Y, Zahedidastjerdi A, Abdollahi A, Amindoust A, Bahrami M, Karimipour A, Goodarzi M. Investigation of energy performance in a U-shaped evacuated solar tube collector using oxide added nanoparticles through the emitter, absorber and transmittal environments via discrete ordinates radiation method. J Therm Anal Calorim. 2020;139(4):2623–31.

    Article  CAS  Google Scholar 

  2. Giwa SO, Sharifpur M, Goodarzi M, Alsulami H, Meyer JP. Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09372-w.

    Article  Google Scholar 

  3. Efstathios (Stathis) E, Michaelides. Nanofluidics: thermodynamic and transport properties. Switzerland: Springer; 2014.

    Google Scholar 

  4. Ahmadi MH, Mohseni-Gharyehsafa B, Ghazvini M, Goodarzi M, Jilte RD, Kumar R. Comparing various machine learning approaches in modeling the dynamic viscosity of CuO/water nanofluid. J Therm Anal Calorim. 2020;139(4):2585–99.

    Article  CAS  Google Scholar 

  5. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. IL (United States): Argonne National Lab; 1995.

    Google Scholar 

  6. Buongiorno J. Convective transport in nanofluids. ASME J Heat Transf. 2006;128(3):240–50.

    Article  Google Scholar 

  7. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int J Heat Mass Transf. 2007;50(9–10):2002–18.

    Article  CAS  Google Scholar 

  8. Rashidi MM, Nasiri M, Khezerloo M, Laraqi N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J Magn Magn Mater. 2016;401:159–68.

    Article  CAS  Google Scholar 

  9. Kefayati GH, Sidik NA. Simulation of natural convection and entropy generation of non-Newtonian nanofluid in an inclined cavity using Buongiorno’s mathematical model (Part II, entropy generation). Powder Technol. 2017;305:679–703.

    Article  CAS  Google Scholar 

  10. Hassan M, Marin M, Ellahi R, Alamri SZ. Exploration of convective heat transfer and flow characteristics synthesis by Cu–Ag/water hybrid-nanofluids. Heat Transf Res. 2018;49(18):1837–48.

    Article  Google Scholar 

  11. Zhang L, Arain MB, Bhatti MM, Zeeshan A, Hal-Sulami H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl Math Mech-Engl. 2020;41(4):637–54.

    Article  CAS  Google Scholar 

  12. Waqas H, Khan SU, Bhatti MM, Imran M. Significance of bioconvection in chemical reactive flow of magnetized Carreau–Yasuda nanofluid with thermal radiation and second-order slip. J Therm Anal Calorim. 2020;140:1293–306.

    Article  CAS  Google Scholar 

  13. Mehryan SA, Ghalambaz M, Izadi M. Conjugate natural convection of nanofluids inside an enclosure filled by three layers of solid, porous medium and free nanofluid using Buongiorno’s and local thermal non-equilibrium models. J Therm Anal Calorim. 2019;135(2):1047–67.

    Article  CAS  Google Scholar 

  14. Nayak MK, Akbar NS, Tripathi D, Khan ZH, Pandey VS. MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Adv Powder Technol. 2017;28(9):2159–66.

    Article  CAS  Google Scholar 

  15. Khan U, Ahmed N, Mohyud-Din ST, Bin-Mohsin B. Nonlinear radiation effects on MHD flow of nanofluid over a nonlinearly stretching/shrinking wedge. Neural Comput Appl. 2017;28(8):2041–50.

    Article  Google Scholar 

  16. Tian XY, Li BW, Hu ZM. Convective stagnation point flow of a MHD non-Newtonian nanofluid towards a stretching plate. Int J Heat Mass Transf. 2018;127:768–80.

    Article  CAS  Google Scholar 

  17. Alsagri AS, Hassanpour A, Alrobaian AA. Simulation of MHD nanofluid flow in existence of viscous dissipation by means of ADM. Case Stud Therm Eng. 2019;14:100494.

    Article  Google Scholar 

  18. Wakif A, Chamkha A, Animasaun IL, Zaydan M, Waqas H, Sehaqui R. Novel physical insights into the thermodynamic irreversibilities within dissipative EMHD fluid flows past over a moving horizontal riga plate in the coexistence of wall suction and joule heating effects: a comprehensive numerical investigation. Arab J Sci Eng. 2020. https://doi.org/10.1007/s13369-020-04757-3.

    Article  Google Scholar 

  19. Wakif A, Chamkha A, Thumma T, Animasaun IL, Sehaqui R. Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09488-z.

    Article  Google Scholar 

  20. Prakash J, Siva EP, Tripathi D, Kuharat S, Bég OA. Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects: modelling a solar magneto-biomimetic nanopump. Renew Energy. 2019;133:1308–26.

    Article  CAS  Google Scholar 

  21. Dogonchi AS, Sheremet MA, Ganji DD, Pop I. Free convection of copper–water nanofluid in a porous gap between hot rectangular cylinder and cold circular cylinder under the effect of inclined magnetic field. J Therm Anal Calorim. 2019;135(2):1171–84.

    Article  CAS  Google Scholar 

  22. Waqas H, Imran M, Muhammad T, Sait SM, Ellahi R. Numerical investigation on bioconvection flow of Oldroyd-B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09728-2.

    Article  Google Scholar 

  23. Bestman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14(4):389–96.

    Article  CAS  Google Scholar 

  24. Hamid A, Khan M. Impacts of binary chemical reaction with activation energy on unsteady flow of magneto-Williamson nanofluid. J Mol Liq. 2018;262:435–42.

    Article  CAS  Google Scholar 

  25. Hayat T, Aziz A, Muhammad T, Alsaedi A. Effects of binary chemical reaction and Arrhenius activation energy in Darcy-Forchheimer three-dimensional flow of nanofluid subject to rotating frame. J Therm Anal Calorim. 2019;136(4):1769–79.

    Article  CAS  Google Scholar 

  26. Irfan M, Khan WA, Khan M, Gulzar MM. Influence of Arrhenius activation energy in chemically reactive radiative flow of 3D Carreau nanofluid with nonlinear mixed convection. J Phys Chem Solids. 2019;125:141–52.

    Article  CAS  Google Scholar 

  27. Khan SU, Waqas H, Shehzad SA, Imran M. Theoretical analysis of tangent hyperbolic nanoparticles with combined electrical MHD, activation energy and Wu’s slip features: a mathematical model. Phys Scr. 2019;94(12):125211.

    Article  Google Scholar 

  28. Bhatti MM, Michaelides EE. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid flow over a Riga plate. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09492-3.

    Article  Google Scholar 

  29. Motsa SS. A new spectral local linearization method for nonlinear boundary layer flow problems. J Appl Math. 2013. https://doi.org/10.1155/2013/423628.

    Article  Google Scholar 

  30. Disu AB, Dada MS. Reynold’s model viscosity on radiative MHD flow in a porous medium between two vertical wavy walls. J Taibah Univ Sci. 2017;11(4):548–65.

    Article  Google Scholar 

  31. Trefethen LN. Spectral methods in MATLAB. SIAM. 2000.

  32. Disu AB, Dada MS. Reynold’s model viscosity on radiative MHD flow in a porous medium between two vertical wavy walls. J Taibah Univ Sci. 2017;11(4):548–65.

    Article  Google Scholar 

  33. Bin-Mohsin B. Buoyancy Effects on MHD transport of nanofluid over a stretching surface with variable viscosity. IEEE Access. 2019;7:75398–406.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, A., Huang, H.L., Khalique, C.M. et al. Numerical analysis of activation energy on MHD nanofluid flow with exponential temperature-dependent viscosity past a porous plate. J Therm Anal Calorim 143, 2585–2596 (2021). https://doi.org/10.1007/s10973-020-10295-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10295-9

Keywords

Navigation