Skip to main content
Log in

M-derivative applied to the dispersive optical solitons for the Schrödinger-Hirota equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Optical dispersive soliton solutions to the fractional Schrödinger-Hirota equation (SHE) in an optical fiber involving M-derivative of order \( \alpha\) are studied in this paper. The considered analytical method is based on the Jacobi elliptic function (JEF) ansatz. We found new bright, dark and singular optical soliton solutions that are relevant in optoelectronics problems in optical fibers. Some important constraints conditions were founded between the parameters of the JEF solitons solutions. The main result of the present work shows that the JEF ansatz is an important and efficient mathematical method to obtain new solutions for solving problems in optical fibers. Typical behaviour of the obtained soliton solutions is depicted in some interesting simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Biswas, Opt. Quantum Electron. 35, 979 (2003)

    Article  Google Scholar 

  2. J. Vega-Guzman, A. Biswas, M.F. Mahmood, Q. Zhou, S.P. Moshokoa, M. Belic, Optik 171, 114 (2018)

    Article  ADS  Google Scholar 

  3. A. Biswas, Opt. Commun. 239, 457 (2004)

    Article  ADS  Google Scholar 

  4. A. Biswas, S. Konar, Introduction to Non-Kerr Law Optical Solitons (CRC Press, Boca Raton, 2006)

  5. A. Biswas, A.J.M. Jawad, W.N. Manrakhan, A.K. Sarma, K.R. Khan, Opt. Laser Technol. 44, 2265 (2012)

    Article  ADS  Google Scholar 

  6. A. Biswas, K. Khan, A. Rahman, A. Yildirim, T. Hayat, O.M. Aldossary, J. Optoelectron. Adv. Mater. 14, 571 (2012)

    Google Scholar 

  7. C.Q. Dai, Y.Y. Wang, Y. Fan, D.G. Yu, Nonlinear Dyn. 92, 1351 (2018)

    Article  Google Scholar 

  8. Y.Y. Wang, L. Chen, C.Q. Dai, J. Zheng, Y. Fan, Nonlinear Dyn. 90, 1269 (2017)

    Article  Google Scholar 

  9. M. Mirzazadeh, A.H. Arnous, M.F. Mahmood, E. Zerrad, A. Biswas, Nonlinear Dyn. 81, 277 (2015)

    Article  Google Scholar 

  10. R. Sassaman, A. Biswas, Nonlinear Dyn. 61, 23 (2010)

    Article  Google Scholar 

  11. Y.Y. Wang, C.Q. Dai, Y.Q. Xu, J. Zheng, Y. Fan, Nonlinear Dyn. 92, 1261 (2018)

    Article  Google Scholar 

  12. W. Liu, M. Liu, Y. OuYang, H. Hou, G. Ma, M. Lei, Z. Wei, Nanotechnology 29, 174002 (2018)

    Article  ADS  Google Scholar 

  13. W. Liu, Y.N. Zhu, M. Liu, B. Wen, S. Fang, H. Teng, Z. Wei, Photon. Res. 6, 220 (2018)

    Article  Google Scholar 

  14. A. Biswas, Nonlinear Dyn. 59, 423 (2010)

    Article  Google Scholar 

  15. A. Biswas, Nonlinear Dyn. 58, 345 (2009)

    Article  Google Scholar 

  16. V.E. Zakharov, A.B. Shabat, Sov. Phys. JETP 34, 62 (1972)

    ADS  Google Scholar 

  17. R.K. Dowluru, P.R. Bhima, J. Opt. 40, 132 (2011)

    Article  Google Scholar 

  18. P. Green, A. Biswas, Commun. Nonlinear Sci. Numer. Simul. 15, 3865 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.H. Bhrawy, A.A. Alshaery, E.M. Hilal, W.N. Manrakhan, M. Savescu, A. Biswas, J. Nonlinear Opt. Phys. Mat. 23, 1450014 (2014)

    Article  ADS  Google Scholar 

  20. Z.Y. Zhang, Z.H. Liu, X.J. Miao, Y.Z. Chen, Appl. Math. Comput. 216, 3064 (2010)

    MathSciNet  Google Scholar 

  21. E.C. Aslan, F. Tchier, M. Inc, Superlattices Microstruct. 105, 48 (2017)

    Article  ADS  Google Scholar 

  22. D. Fandio Jubgang jr., A.M. Dikandé, A. Sunda-Meya, Phys. Rev. A 92, 053850 (2015)

    Article  ADS  Google Scholar 

  23. D. Feng, J. Jiao, G. Jiang, Phys. Lett. A 382, 2081 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Elsayed M.E. Zayed, Abdul-Ghani Al-Nowehy, Waves Random Complex Media 27, 420 (2016)

    Article  ADS  Google Scholar 

  25. Elsayed M.E. Zayed, Abdul-Ghani Al-Nowehy, Optik 139, 123 (2017)

    Article  ADS  Google Scholar 

  26. E. Yaşar, E. Yaşar, New Trends Math. Sci. 6, 116 (2018)

    Google Scholar 

  27. X. Geng, Y.Lv. Darboux, Nonlinear Dyn. 69, 1621 (2012)

    Article  Google Scholar 

  28. S. Kumar, K. Singh, R.K. Gupta, Pramana 79, 41 (2012)

    Article  ADS  Google Scholar 

  29. K.B. Oldham, J. Spanier, The Fractional Calculus (Academic Press, London, 1974)

  30. K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (Wiley, New York, 1993)

  31. J. Sousa, E.C. de Oliveira, On the local $M$-derivative, arXiv:1704.08186 (2017)

  32. F. Mainardi, R. Gorenflo, J. Comput. Appl. Math. 118, 283 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  33. R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions-Related Topics and Applications (Springer, Berlin, 2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Gómez-Aguilar.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yépez-Martínez, H., Gómez-Aguilar, J.F. M-derivative applied to the dispersive optical solitons for the Schrödinger-Hirota equation. Eur. Phys. J. Plus 134, 93 (2019). https://doi.org/10.1140/epjp/i2019-12459-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2019-12459-7

Navigation