Skip to main content
Log in

Enhancing the convergence speed of numerical solution using the flow rate control in a novel lattice Boltzmann method

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, the lattice Boltzmann method (LBM) is modified using a flow rate control code to enhance the convergence speed and decrease the solution time. The mass flow rate is checked at each cross section for the modified lattice Boltzmann method, while for the regular lattice Boltzmann method, the mass flow rate only is checked at the outlet section of the channel. The results obtained by the modified lattice Boltzmann method are compared with the regular lattice Boltzmann one and finite volume methods for different types of channel flow including simple channel, blocked channel with one and two obstacles, channel with two branching outlets, and curved channel with 90-degree bend. The effects of Reynolds number, under relaxation factor, and mesh number on the iteration number and solution time are studied. The results showed that the solution time of a simple channel decreases about 87%, 77%, and 63% for mesh numbers \( 40\times 400\) , \( 60 \times 600\) , and \( 80 \times 800\) , respectively using the modified LBM as compared with the regular one at under relaxation factor of 0.4 and \( {\rm Re}=100\) . For a blocked channel with one obstacle, the iteration number decreases about 10 times by using the modified LBM as compared with the regular one for a mesh size of \( 40\times 400\) . Finally, the modified LBM enhances the speed of the solution about 57%, 40%, and 73% for the channel with 90-degree bend, the channel with two branching outlets, and blocked channel with two obstacles, respectively, as compared with the regular LBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Mohamad, Lattice Boltzmann Method: Fundamentals and Engineering Applications with Computer Codes (Springer Science & Business Media, 2011)

  2. S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond (Oxford University Press, 2001)

  3. Y. Wang, D.K. Sun, Y.L. He, W.Q. Tao, Eur. Phys. J. Plus 130, 9 (2015)

    Article  ADS  Google Scholar 

  4. H.A. Tighchi, M. Sobhani, J.A. Esfahani, Eur. Phys. J. Plus 133, 8 (2018)

    Article  Google Scholar 

  5. A. Asadollahi, S. Rashidi, J.A. Esfahani, R. Ellahi, Eur. Phys. J. Plus 133, 306 (2018)

    Article  Google Scholar 

  6. A. Asadollahi, S. Rashidi, J.A. Esfahani, Meccanica 52, 2265 (2017)

    Article  Google Scholar 

  7. A. Asadollahi, S. Rashidi, J.A. Esfahani, Meccanica 53, 803 (2018)

    Article  Google Scholar 

  8. R. Hosseini, S. Rashidi, J.A. Esfahani, J. Braz. Soc. Mech. Sci. Eng. 39, 3695 (2017)

    Article  Google Scholar 

  9. S.H. Musavi, M. Ashrafizaadeh, Int. J. Heat Fluid Flow 59, 10 (2016)

    Article  Google Scholar 

  10. Y.X. Chen, S.C. Chang, W.B. Young, Comput. Math. Appl. 75, 2374 (2018)

    Article  MathSciNet  Google Scholar 

  11. H. Kang, Y. Shi, Y. Yan, Comput. Fluids 167, 196 (2018)

    Article  MathSciNet  Google Scholar 

  12. R.C.V. Coelho, M.M. Doria, Comput. Fluids 165, 144 (2018)

    Article  MathSciNet  Google Scholar 

  13. M.A. Woodgate, G.N. Barakos, R. Steijl, G.J. Pringle, Comput. Fluids 173, 237 (2018)

    Article  MathSciNet  Google Scholar 

  14. B.M. Boghosian, F. Dubois, B. Graille, P. Lallemand, M.M. Tekitek, Comput. Fluids 172, 301 (2018)

    Article  MathSciNet  Google Scholar 

  15. M.S. Valipour, S. Rashidi, R. Masoodi, J. Heat Transf. 136, 062601 (2014)

    Article  Google Scholar 

  16. A. Rashidi, M. Maghiar, M.H. Sigari, Iran. J. Sci. Technol., Trans. Civ. Eng. 41, 415 (2017)

    Article  Google Scholar 

  17. A. Rashidi, H. Rashidi-Nejad, M. Maghiar, KSCE J. Civ. Eng. 18, 1580 (2014)

    Article  Google Scholar 

  18. A. Rashidi, M.H. Sigari, M. Maghiar, D. Citrin, KSCE J. Civ. Eng. 20, 1178 (2016)

    Article  Google Scholar 

  19. M. Sukop, D. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers (Springer-Verlag, Berlin, Heidelberg, 2006)

  20. M. Sukop, D. Or, Physica B 338, 298 (2003)

    Article  ADS  Google Scholar 

  21. Q. Zou, X. He, Phys. Fluids 9, 1591 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  22. M.C. Sukop, D.T. Thorne jr., Lattice Boltzmann Modeling (Springer, 2006)

  23. E. Blosch, W. Shyy, R. Smith, Numer. Heat Transf., Part B: Fundamentals 24, 415 (1993)

    Article  ADS  Google Scholar 

  24. Fluent Software 6.3 User’s Guide (Fluent Inc. Pune, India)

  25. M. Breuer, J. Bernsdorf, T. Zeiser, F. Durst, Int. J. Heat Fluid Flow 21, 186 (2000)

    Article  Google Scholar 

  26. R.W. Fox, A.T. McDonald, P.J. Pritchard, Introduction to Fluid Mechanics, 6th edition (John Wiley & Sons. Inc. Hoboken, NJ, 2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Abolfazli Esfahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazemian, Y., Esfahani, J.A. & Rashidi, S. Enhancing the convergence speed of numerical solution using the flow rate control in a novel lattice Boltzmann method. Eur. Phys. J. Plus 133, 555 (2018). https://doi.org/10.1140/epjp/i2018-12373-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12373-6

Navigation