Skip to main content
Log in

Thermodynamic performance optimization for an irreversible vacuum thermionic generator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Theoretical model of an irreversible vacuum thermionic generator considering external and internal finite rate heat transfer is established in this paper. By assuming radiative heat transfer processes, the general expressions of performance parameters are derived based on non-equilibrium thermodynamics and finite-time thermodynamics (FTT). The thermodynamic performances of the irreversible thermionic device are further analyzed and optimized by using the FTT theory with multiple optimization criteria such as power output, efficiency, ecological function, and efficient power. The influences of design parameters, such as output voltage, collector work function and heat reservoir temperature, on optimal performance are analyzed in detail by numerical calculations. By properly choosing the work function and output voltage, the thermionic generator can be tuned to operate in the optimal condition with maximum power or efficiency. By comparing the device performance at different design points, the optimal operation regions of power and efficiency of the irreversible thermionic generator are determined. The obtained results are of theoretical significance for the optimal design of practical solar-powered thermionic generators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.N. Hatsopoulos, J. Kaye, J. Appl. Phys. 29, 1124 (1958)

    Article  ADS  Google Scholar 

  2. V.C. Wilson, J. Appl. Phys. 30, 475 (1959)

    Article  ADS  Google Scholar 

  3. J.M. Houston, J. Appl. Phys. 30, 481 (1959)

    Article  ADS  Google Scholar 

  4. N.S. Rasor, J. Appl. Phys. 31, 163 (1960)

    Article  ADS  Google Scholar 

  5. D. Gabor, Nature 189, 868 (1961)

    Article  ADS  Google Scholar 

  6. J.H. Ingold, J. Appl. Phys. 32, 769 (1961)

    Article  ADS  Google Scholar 

  7. M.A. Cayless, Br. J. Appl. Phys. 12, 433 (1961)

    Article  ADS  Google Scholar 

  8. G.N. Hatsopoulos, E.P. Gyftopoulos, Thermionic Energy Conversion, Vol. 1: Processes and Devices (MIT Press, Cambridge, 1973)

  9. L.B. Robinson, K. Shimada, J. Appl. Phys. 47, 107 (1976)

    Article  ADS  Google Scholar 

  10. F.G. Baksht, G.A. Dyvzhev, A.M. Martsinovskiy, B.Y. Moyzhes, G.Y. Dikus, E.B. Sonin, V.G. Yur’yev, Thermionic Converters and Low-Temperature Plasma, edited by L.K. Hansen (Technical Information Center, US DoE, Springfield, VA, 1978) English edition

  11. Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, T.W. Kenny, Appl. Phys. Lett. 78, 2572 (2001)

    Article  ADS  Google Scholar 

  12. Y. Hishinuma, B.Y. Moyzhes, T.H. Geballe, T.W. Kenny, Appl. Phys. Lett. 81, 4242 (2002)

    Article  ADS  Google Scholar 

  13. Y. Hishinuma, T.H. Geballe, B.Y. Moyzhes, T.W. Kenny, J. Appl. Phys. 94, 4690 (2003)

    Article  ADS  Google Scholar 

  14. H.T. Chua, X. Wang, J.M. Gordon, Appl. Phys. Lett. 84, 3999 (2004)

    Article  ADS  Google Scholar 

  15. T. Zeng, Appl. Phys. Lett. 88, 153104 (2006)

    Article  ADS  Google Scholar 

  16. J.I. Lee, Y.H. Jeong, H.C. No, R. Hannebauer, S.K. Yoo, Appl. Phys. Lett. 95, 223107 (2009)

    Article  ADS  Google Scholar 

  17. M.F. O’Dwyer, T.E. Humphrey, R.A. Lewis, C. Zhang, J. Phys. D: Appl. Phys. 42, 035417 (2009)

    Article  ADS  Google Scholar 

  18. D.S. Chauhan, S.K. Srivastava, Non-Conventional Energy Resources (New Age International, New Delhi, India, 2007)

  19. B. Andresen, Finite-Time Thermodynamics, in Physics Laboratory II (University of Copenhagen, 1983)

  20. B. Andresen, R.S. Berry, M.J. Ondrechen, P. Salamon, Acc. Chem. Res. 17, 266 (1984)

    Article  Google Scholar 

  21. A. de Vos, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University, Oxford, 1992)

  22. A. Bejan, J. Appl. Phys. 79, 1191 (1996)

    Article  ADS  Google Scholar 

  23. R.S. Berry, V.A. Kazakov, S. Sieniutycz, Z. Szwast, A.M. Tsirlin, Thermodynamic Optimization of Finite Time Processes (Wiley, Chichester, 1999)

  24. L.G. Chen, C. Wu, F.R. Sun, J. Non-Equilib. Thermodyn. 24, 327 (1999)

    ADS  Google Scholar 

  25. C. Wu, L.G. Chen, J.C. Chen, Recent Advances in Finite Time Thermodynamics (Nova Science Publishers, New York, 1999)

  26. S. Sieniutycz, Phys. Rep. 326, 165 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Sieniutycz, A. de Vos, Thermodynamics of Energy Conversion and Transport (Springer-Verlag, New York, 2000)

  28. K.H. Hoffman, J. Burzler, A. Fischer, M. Schaller, S. Schubert, J. Non-Equilib. Thermodyn. 28, 233 (2003)

    Article  ADS  Google Scholar 

  29. L.G. Chen, F.R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization (Nova Science Publishers, New York, 2004)

  30. S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems (Elsevier, Oxford, UK, 2009)

  31. L.G. Chen, Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles (Higher Education Press, Beijing, 2005)

  32. A. de Vos, Thermodynamics of Solar Energy Conversion (Wiley-VCH Verlag, 2008)

  33. B. Andresen, Angew. Chem. Int. Ed. 50, 2690 (2011)

    Article  Google Scholar 

  34. S. Sieniutycz, J. Jezowski, Energy Optimization in Process Systems and Fuel Cells (Elsevier, Oxford, UK, 2013)

  35. F.K. Meng, L.G. Chen, F.R. Sun, B. Yang, Energy 66, 965 (2014)

    Article  Google Scholar 

  36. B. Yang, L.G. Chen, Y.L. Ge, F.R. Sun, Int. J. Exergy 14, 459 (2014)

    Article  Google Scholar 

  37. B. Xiong, L.G. Chen, F.K. Meng, F.R. Sun, Energy 77, 562 (2014)

    Article  Google Scholar 

  38. K.H. Hoffmann, B. Andresen, P. Salamon, Finite-time thermodynamics tools to analyze dissipative processes, in Proceedings of the 240 Conference: Science’s Great Challences, in Adv. Chem. Phys., Vol. 157, edited by A.R. Dinner (Wiley, 2015) pp. 57--67

  39. Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 169 (2015)

    Article  Google Scholar 

  40. Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 36 (2015)

    Article  Google Scholar 

  41. X.Y. Qin, L.G. Chen, Y.L. Ge, F.R. Sun, Physica A 436, 788 (2015)

    Article  ADS  Google Scholar 

  42. Z.M. Ding, L.G. Chen, W.H. Wang, Y.L. Ge, F.R. Sun, Physica A 431, 94 (2015)

    Article  ADS  Google Scholar 

  43. X.H. Wu, L.G. Chen, F.R. Sun, Appl. Math. Model. 39, 1689 (2015)

    Article  MathSciNet  Google Scholar 

  44. L.G. Chen, X.H. Wu, Q.H. Xiao, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 2341 (2015)

    Google Scholar 

  45. Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 97 (2015)

    Google Scholar 

  46. L.G. Chen, B. Yang, X. Shen, Z.H. Xie, F.R. Sun, Appl. Thermal Eng. 86, 151 (2015)

    Article  Google Scholar 

  47. E. Açikkalp, N. Caner, Eur. Phys. J. Plus 130, 73 (2015)

    Article  Google Scholar 

  48. E. Açikkalp, N. Caner, Eur. Phys. J. Plus 130, 93 (2015)

    Article  Google Scholar 

  49. M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz, Eur. Phys. J. Plus 130, 190 (2015)

    Article  Google Scholar 

  50. J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Eur. Phys. J. Plus 131, 149 (2016)

    Article  Google Scholar 

  51. H.J. Feng, L.G. Chen, Z.H. Xie, F.R. Sun, Eur. Phys. J. Plus 131, 274 (2016)

    Article  Google Scholar 

  52. E. Açikkalp, Eur. Phys. J. Plus 131, 426 (2016)

    Article  Google Scholar 

  53. L. Zhang, L.G. Chen, F.R. Sun, Physica A 445, 221 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  54. Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Physica A 447, 49 (2016)

    Article  ADS  Google Scholar 

  55. B. Yang, L.G. Chen, F.R. Sun, J. Energy Inst. 89, 1 (2016)

    Article  ADS  Google Scholar 

  56. C. Wang, L.G. Chen, S.J. Xia, F.R. Sun, Energy 99, 152 (2016)

    Article  Google Scholar 

  57. Y.H. Yu, Z.M. Ding, L.G. Chen, W.H. Wang, F.R. Sun, Energy 107, 287 (2016)

    Article  Google Scholar 

  58. J.L. Zhou, L.G. Chen, Z.M. Ding, F.R. Sun, Energy 111, 306 (2016)

    Article  Google Scholar 

  59. C. Wang, L.G. Chen, S.J. Xia, F.R. Sun, J. Non-Equilib. Thermodyn. 41, 313 (2016)

    Article  ADS  Google Scholar 

  60. Y.L. Ge, L.G. Chen, F.R. Sun, Entropy 18, 139 (2016)

    Article  ADS  Google Scholar 

  61. L.G. Chen, H.J. Feng, Z.H. Xie, Entropy 18, 353 (2016)

    Article  ADS  Google Scholar 

  62. L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Processes (Science Press, Beijing, 2016)

  63. L.G. Chen, S.J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles (Science Press, Beijing, 2016)

  64. S. Sieniutycz, Thermodynamic Approaches in Engineering Systems (Elsevier, Oxford, 2016)

  65. L.G. Chen, F.K. Meng, F.R. Sun, Sci. China: Tech. Sci. 59, 442 (2016)

    Article  Google Scholar 

  66. S.J. Xia, L.G. Chen, Z.H. Xie, F.R. Sun, Sci. China: Tech. Sci. 59, 1507 (2016)

    Article  Google Scholar 

  67. S.J. Xia, L.G. Chen, F.R. Sun, Sci. China: Tech. Sci. 59, 1867 (2016)

    Article  Google Scholar 

  68. Y. Yin, L.G. Chen, F. Wu, Eur. Phys. J. Plus 132, 45 (2017)

    Article  ADS  Google Scholar 

  69. Y.H. Bi, L.G. Chen, Finite Time Thermodynamic Optimization for Air Heat Pumps (Science Press, Beijing, 2017) (in Chinese)

  70. H.J. Feng, L.G. Chen, X. Liu, Z.H. Xie, Int. J. Heat Mass Transfer 111, 1192 (2017)

    Article  Google Scholar 

  71. S.J. Xia, L.G. Chen, Eur. Phys. J. Plus 132, 201 (2017)

    Article  Google Scholar 

  72. Z.X. Wu, L.G. Chen, Y.L. Ge, F.R. Sun, Eur. Phys. J. Plus 132, 203 (2017)

    Article  Google Scholar 

  73. Y.L. Ge, L.G. Chen, X.Y. Qin, Z.H. Xie, Eur. Phys. J. Plus 132, 209 (2017)

    Article  Google Scholar 

  74. S.J. Xia, L.G. Chen, Eur. Phys. J. Plus 132, 235 (2017)

    Article  Google Scholar 

  75. Y. Pan, B. Lin, J. Quanzhou Normal University (Natural Science) 26, 41 (2008) (in Chinese)

    Google Scholar 

  76. L.G. Chen, Z.M. Ding, F.R. Sun, J. Appl. Phys. 107, 104507 (2010)

    Article  ADS  Google Scholar 

  77. Z.M. Ding, L.G. Chen, F.R. Sun, Heat Transfer Eng. 33, 693 (2012)

    Article  ADS  Google Scholar 

  78. Z.M. Ding, L.G. Chen, F.R. Sun, J. Thermal Sci. Technol. 14, 134 (2015) (in Chinese)

    Google Scholar 

  79. C. Wu, Energy Convers. Manag. 33, 279 (1992)

    Article  Google Scholar 

  80. L.B. Erbay, H. Yavuz, Design parameters of a thermionic energy converter, in Proceedings of the International Conference on Thermodynamics Analysis and Improvement of Energy Systems (TAIES’97), Beijing, 1997 (Beijing World Publishing Corporation, 1997)

  81. S. Bhattacharyya, Design of a thermodynamically power optimized irreversible thermionic generator, in Recent Advances in Finite-Time Thermodynamics, edited by C. Wu, L.G. Chen, J.C. Chen (Nova Science Publishers, New York, 1999) pp. 105--113

  82. Y. Wang, S. Su, B. Lin, J. Chen, J. Appl. Phys. 114, 053502 (2013)

    Article  ADS  Google Scholar 

  83. X.C. Xuan, D. Li, J. Power Sources 115, 167 (2003)

    Article  ADS  Google Scholar 

  84. T.J. Liao, Z.M. Yang, B.H. Lin, Sci. Sin. Phys. Mech. Astron. 44, 125 (2014) (in Chinese)

    Article  Google Scholar 

  85. Z.M. Ding, L.G. Chen, Y.L. Ge, F.R. Sun, Environ. Eng. Manag. J. 14, 97 (2015)

    Google Scholar 

  86. Y. Wang, S. Su, T. Liu, G. Su, J. Chen, Energy 90, 1575 (2015)

    Article  Google Scholar 

  87. X.C. Xuan, J. Appl. Phys. 92, 4746 (2002)

    Article  ADS  Google Scholar 

  88. Z.M. Ding, L.G. Chen, F.R. Sun, J. Energy Inst. 88, 169 (2015)

    Article  Google Scholar 

  89. Z.M. Yang, T.J. Liao, B.H. Lin, Sci. Sin. Technol. 44, 1173 (2014) (in Chinese)

    Google Scholar 

  90. S. Su, H. Zhang, X. Chen, J. Kang, J. Chen, Energy 93, 900 (2015)

    Article  Google Scholar 

  91. J.W. Schwede, I. Bargatin, D.C. Riley, B.E. Hardin, Nat. Mater. 9, 762 (2010)

    Article  ADS  Google Scholar 

  92. S. Su, H. Zhang, X. Chen, J. Kang, J. Chen, Sol. Energy Mater. Sol. Cells 117, 219 (2013)

    Article  Google Scholar 

  93. J. Lin, Z.M. Yang, B.H. Lin, Z.F. Huang, Sci. Sin. Technol. 46, 225 (2016) (in Chinese)

    Google Scholar 

  94. Y. Wang, T. Liao, Y. Zhang, X. Chen, S. Su, J. Chen, J. Appl. Phys. 119, 045106 (2016)

    Article  ADS  Google Scholar 

  95. F. Angulo-Brown, J. Appl. Phys. 69, 7465 (1991)

    Article  ADS  Google Scholar 

  96. Z. Yan, J. Appl. Phys. 73, 3583 (1993)

    Article  ADS  Google Scholar 

  97. L.G. Chen, F.R. Sun, W.Z. Chen, J. Eng. Therm. Energy Power 9, 374 (1994) (in Chinese)

    Google Scholar 

  98. N. Sanchez-Salas, A. Calvo Hernandez, Phys. Rev. E 70, 046134 (2004)

    Article  ADS  Google Scholar 

  99. T.H. Chen, J. Phys. D: Appl. Phys. 39, 1442 (2006)

    Article  ADS  Google Scholar 

  100. Y. Ust, Appl. Therm. Eng. 29, 47 (2009)

    Article  Google Scholar 

  101. X.W. Liu, L.G. Chen, F. Wu, F.R. Sun, Sci. China Ser. G: Phys. Mech. Astron. 52, 1976 (2009)

    Article  ADS  Google Scholar 

  102. X.W. Liu, L.G. Chen, F. Wu, F.R. Sun, Phys. Scr. 81, 025003 (2010)

    Article  ADS  Google Scholar 

  103. Z.M. Ding, L.G. Chen, F.R. Sun, Appl. Math. Model. 35, 276 (2011)

    Article  MathSciNet  Google Scholar 

  104. J. Li, L.G. Chen, F.R. Sun, Int. J. Sustain. Energy 30, 55 (2011)

    Article  Google Scholar 

  105. P.A. Ngouateu Wouagfack, R. Tchinda, Int. J. Therm. Sci. 54, 209 (2012)

    Article  Google Scholar 

  106. H. Wang, G. Wu, J. Appl. Phys. 113, 054309 (2013)

    Article  ADS  Google Scholar 

  107. M.M. Naserian, S. Farahat, F. Sarhaddi, Energy Convers. Manag. 103, 790 (2015)

    Article  Google Scholar 

  108. R. Long, W. Liu, Physica A 443, 14 (2016)

    Article  ADS  Google Scholar 

  109. T. Yilmaz, J. Energy Inst. 79, 38 (2006)

    Article  Google Scholar 

  110. T. Yilmaz, Proc. IMechE Part A: J. Power Energy 221, 603 (2007)

    Article  Google Scholar 

  111. R. Kumar, S.C. Kaushik, R. Kumar, Int. J. Eng. Res. Technol. 6, 643 (2013)

    Google Scholar 

  112. R. Arora, S.C. Kaushik, R. Kumar, J. Thermal Eng. 1, 345 (2015)

    Article  Google Scholar 

  113. Y.C. Gerstenmaier, G. Wachutka, AIP Conf. Proc. 890, 349 (2007)

    Article  ADS  Google Scholar 

  114. F.P. Incropera, D.P. De Witt, Fundamentals of Heat and Mass Transfer (Wiley, New York, 1985)

  115. W.S. Janna, Engineering Heat Transfer (CRC Press, Boca Raton, 2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingen Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Ding, Z., Zhou, J. et al. Thermodynamic performance optimization for an irreversible vacuum thermionic generator. Eur. Phys. J. Plus 132, 293 (2017). https://doi.org/10.1140/epjp/i2017-11561-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11561-2

Navigation