Skip to main content
Log in

Derivation of a generalized Schrödinger equation from the theory of scale relativity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Using Nottale’s theory of scale relativity relying on a fractal space-time, we derive a generalized Schrödinger equation taking into account the interaction of the system with the external environment. This equation describes the irreversible evolution of the system towards a static quantum state. We first interpret the scale-covariant equation of dynamics stemming from Nottale’s theory as a hydrodynamic viscous Burgers equation for a potential flow involving a complex velocity field and an imaginary viscosity. We show that the Schrödinger equation can be directly obtained from this equation by performing a Cole-Hopf transformation equivalent to the WKB transformation. We then introduce a friction force proportional and opposite to the complex velocity in the scale-covariant equation of dynamics in a way that preserves the local conservation of the normalization condition. We find that the resulting generalized Schrödinger equation, or the corresponding fluid equations obtained from the Madelung transformation, involve not only a damping term but also an effective thermal term. The friction coefficient and the temperature are related to the real and imaginary parts of the complex friction coefficient in the scale-covariant equation of dynamics. This may be viewed as a form of fluctuation-dissipation theorem. We show that our generalized Schrödinger equation satisfies an H-theorem for the quantum Boltzmann free energy. As a result, the probability distribution relaxes towards an equilibrium state which can be viewed as a Boltzmann distribution including a quantum potential. We propose to apply this generalized Schrödinger equation to dark matter halos in the Universe, possibly made of self-gravitating Bose-Einstein condensates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schrödinger, Ann. Phys. 384, 489 (1926)

    Article  Google Scholar 

  2. E. Schrödinger, Ann. Phys. 386, 109 (1926)

    Article  Google Scholar 

  3. E. Schrödinger, Phys. Rev. 28, 1049 (1926)

    Article  ADS  Google Scholar 

  4. L. de Broglie, Ann. Phys. 3, 22 (1925)

    Article  Google Scholar 

  5. P.H. Chavanis, T. Matos, Eur. Phys. J. Plus 132, 30 (2017)

    Article  Google Scholar 

  6. E. Schrödinger, Ann. Phys. 384, 734 (1926)

    Article  Google Scholar 

  7. L. de Broglie, C. R. Acad. Sci. Paris 183, 272 (1926)

    Google Scholar 

  8. L. de Broglie, J. Phys. 7, 321 (1926)

    Google Scholar 

  9. P.A.M. Dirac, Proc. R. Soc. A 112, 661 (1926)

    Article  ADS  Google Scholar 

  10. E. Schrödinger, Ann. Phys. 384, 361 (1926)

    Article  Google Scholar 

  11. N. Bohr, Philos. Mag. 26, 1 (1913)

    Article  Google Scholar 

  12. N. Bohr, Philos. Mag. 26, 476 (1913)

    Article  Google Scholar 

  13. W. Heisenberg, Z. Phys. 33, 879 (1925)

    Article  ADS  Google Scholar 

  14. M. Born, P. Jordan, Z. Phys. 34, 858 (1925)

    Article  ADS  Google Scholar 

  15. M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1926)

    Article  ADS  Google Scholar 

  16. G. Wentzel, Z. Phys. 38, 518 (1926)

    Article  ADS  Google Scholar 

  17. L. Brillouin, C. R. Acad. Sci. Paris 183, 24 (1926)

    Google Scholar 

  18. H.A. Kramers, Z. Phys. 39, 828 (1926)

    Article  ADS  Google Scholar 

  19. M. Born, Z. Phys. 38, 803 (1926)

    Article  ADS  Google Scholar 

  20. M. Born, Nature 119, 354 (1927)

    Article  ADS  Google Scholar 

  21. M. Born, Z. Phys. 40, 167 (1927)

    Article  ADS  Google Scholar 

  22. M. Bhaumik, Was Einstein wrong on quantum physics?, arXiv:1511.05098

  23. E. Madelung, Z. Phys. 40, 322 (1927)

    Article  ADS  Google Scholar 

  24. E.H. Kennard, Phys. Rev. 31, 876 (1928)

    Article  ADS  Google Scholar 

  25. E.A. Spiegel, Physica D 1, 236 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  26. L. de Broglie, J. Phys. 8, 225 (1927)

    Google Scholar 

  27. L. de Broglie, C. R. Acad. Sci. Paris 185, 380 (1927)

    Google Scholar 

  28. L. de Broglie, C. R. Acad. Sci. Paris 185, 1118 (1927)

    Google Scholar 

  29. F. London, Z. Phys. 42, 375 (1927)

    Article  ADS  Google Scholar 

  30. L. de Broglie, The Interpretation of Wave Mechanics with the help of Waves with Singular Regions, arXiv:1005.4534

  31. D. Bohm, Phys. Rev. 85, 166 (1952)

    Article  ADS  Google Scholar 

  32. L. de Broglie, C. R. Acad. Sci. Paris 233, 641 (1951)

    Google Scholar 

  33. L. de Broglie, C. R. Acad. Sci. Paris 234, 265 (1952)

    MathSciNet  Google Scholar 

  34. L. de Broglie, C. R. Acad. Sci. Paris 235, 557 (1952)

    Google Scholar 

  35. T. Takabayasi, Prog. Theor. Phys. 8, 143 (1952)

    Article  ADS  Google Scholar 

  36. T. Takabayasi, Prog. Theor. Phys. 9, 187 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  37. D. Bohm, J.P. Vigier, Phys. Rev. 96, 208 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  38. E. Schrödinger, Ann. Inst. H. Poincaré 4, 269 (1932)

    Google Scholar 

  39. R. Fürth, Z. Phys. 81, 143 (1933)

    Article  ADS  Google Scholar 

  40. I. Fényes, Z. Phys. 132, 81 (1952)

    Article  ADS  Google Scholar 

  41. W. Weizel, Z. Phys. 134, 264 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Kershaw, Phys. Rev. 136, 1850 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  43. G.G. Comisar, Phys. Rev. 138, 1332 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  44. P.H. Chavanis, Eur. Phys. J. B 62, 179 (2008)

    Article  ADS  Google Scholar 

  45. P.H. Chavanis, Entropy 17, 3205 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  46. E. Nelson, Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  47. L. Nottale, Scale Relativity and Fractal Space-Time (Imperial College Press, 2011)

  48. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (MacGraw-Hill, New York, 1965)

  49. M.D. Kostin, J. Chem. Phys. 57, 3589 (1972)

    Article  ADS  Google Scholar 

  50. I. Bialynicki-Birula, J. Mycielski, Ann. Phys. 100, 62 (1976)

    Article  ADS  Google Scholar 

  51. P.H. Chavanis, Eur. Phys. J. Plus 132, 248 (2017)

    Article  Google Scholar 

  52. T. De Donder, Bull. Acad. R. Bel. 13, 103 (1927)

    Google Scholar 

  53. P.H. Chavanis, arXiv:1706.05900

  54. E. Madelung, Naturwiss. 14, 1004 (1926)

    Article  ADS  Google Scholar 

  55. P. Ehrenfest, Z. Phys. 45, 455 (1927)

    Article  ADS  Google Scholar 

  56. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)

    Article  ADS  Google Scholar 

  57. P.H. Chavanis, J. Sommeria, R. Robert, Astrophys. J. 471, 385 (1996)

    Article  ADS  Google Scholar 

  58. P.H. Chavanis, Phys. Rev. E 84, 031101 (2011)

    Article  ADS  Google Scholar 

  59. M. von Smoluchowski, Ann. Phys. 48, 1103 (1915)

    Google Scholar 

  60. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  61. A.D. Fokker, Ann. Phys. 43, 810 (1914)

    Article  Google Scholar 

  62. M. Planck, Sitzber. Preuss. Akad. Wiss., 324 (1917)

  63. H. Risken, The Fokker-Planck Equation (Springer, 1989)

  64. P.H. Chavanis, Physica A 389, 375 (2010)

    Article  ADS  Google Scholar 

  65. P.H. Chavanis, Physica A 390, 1546 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  66. C.F. von Weizsäcker, Z. Phys. 96, 431 (1935)

    Article  Google Scholar 

  67. R.A. Fisher, Proc. Cambridge Philos. Soc. 22, 700 (1925)

    Article  ADS  Google Scholar 

  68. D.D. Holm, J.E. Marsden, T. Ratiu, A. Weinstein, Phys. Rep. 123, 1 (1985)

    Article  ADS  Google Scholar 

  69. P.H. Chavanis, Eur. Phys. J. B 70, 73 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  70. C. Tsallis, Introduction to Nonextensive Statistical Mechanics (Springer, 2009)

  71. C.G. Shull, D.K. Atwood, J. Arthur, M.A. Horne, Phys. Rev. Lett. 44, 765 (1980)

    Article  ADS  Google Scholar 

  72. R. Gähler, A.G. Klein, A. Zeilinger, Phys. Rev. A 23, 1611 (1981)

    Article  ADS  Google Scholar 

  73. C.W. Gardiner, J.R. Anglin, T.I.A. Fudge, J. Phys. B 35, 1555 (2002)

    Article  ADS  Google Scholar 

  74. S.P. Cockburn, N.P. Proukakis, Laser Phys. 19, 558 (2009)

    Article  ADS  Google Scholar 

  75. L.P. Pitaevskii, Sov. Phys. 35, 282 (1959)

    MathSciNet  Google Scholar 

  76. S. Choi, S.A. Morgan, K. Burnett, Phys. Rev. A 57, 4057 (1998)

    Article  ADS  Google Scholar 

  77. M. Tsubota, K. Kasamatsu, M. Ueda, Phys. Rev. A 65, 023603 (2002)

    Article  ADS  Google Scholar 

  78. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  79. P.H. Chavanis, Phys. Rev. D 84, 043531 (2011)

    Article  ADS  Google Scholar 

  80. B. Moore, T. Quinn, F. Governato, J. Stadel, G. Lake, Mon. Not. R. Acad. Sci. 310, 1147 (1999)

    Article  ADS  Google Scholar 

  81. A. Klypin, A.V. Kravtsov, O. Valenzuela, Astrophys. J. 522, 82 (1999)

    Article  ADS  Google Scholar 

  82. M. Boylan-Kolchin, J.S. Bullock, M. Kaplinghat, Mon. Not. R. Acad. Sci. 415, L40 (2011)

    ADS  Google Scholar 

  83. L. Hui, J. Ostriker, S. Tremaine, E. Witten, Phys. Rev. D 95, 043541 (2017)

    Article  ADS  Google Scholar 

  84. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)

  85. E. Seidel, W.M. Suen, Phys. Rev. Lett. 72, 2516 (1994)

    Article  ADS  Google Scholar 

  86. J.F. Navarro, C.S. Frenk, S.D.M. White, Astrophys. J. 462, 563 (1996)

    Article  ADS  Google Scholar 

  87. A. Burkert, Astrophys. J. 447, L25 (1995)

    Article  ADS  Google Scholar 

  88. H.Y. Schive, T. Chiueh, T. Broadhurst, Nat. Phys. 10, 496 (2014)

    Article  Google Scholar 

  89. P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 91, 063531 (2015)

    Article  ADS  Google Scholar 

  90. P.H. Chavanis, M. Lemou, F. Méhats, Phys. Rev. D 92, 123527 (2015)

    Article  ADS  Google Scholar 

  91. F.S. Guzmán, L.A. Ureña-López, Phys. Rev. D 69, 124033 (2004)

    Article  ADS  Google Scholar 

  92. F.S. Guzmán, L.A. Ureña-López, Astrophys. J. 645, 814 (2006)

    Article  ADS  Google Scholar 

  93. P. Langevin, C. R. 146, 530 (1908)

    Google Scholar 

  94. P.H. Chavanis, C. Rosier, C. Sire, Phys. Rev. E 66, 036105 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  95. C. Sire, P.H. Chavanis, Phys. Rev. E 66, 046133 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  96. P.H. Chavanis, C. Sire, Phys. Rev. E 69, 016116 (2004)

    Article  ADS  Google Scholar 

  97. Lord Rayleigh, Philos. Mag. 32, 424 (1891)

    Article  Google Scholar 

  98. O. Klein, Ark. Mat., Astron. Fys. 16, 1 (1921)

    Google Scholar 

  99. H.A. Kramers, Physica A 7, 284 (1940)

    MathSciNet  Google Scholar 

  100. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)

    Article  ADS  Google Scholar 

  101. E. Hopf, Commun. Pure App. Mech. 3, 201 (1950)

    Article  Google Scholar 

  102. J. Cole, Quart. Appl. Math. 9, 225 (1951)

    Article  MathSciNet  Google Scholar 

  103. J.O. Hirschfelder, A.C. Christoph, W.E. Palke, J. Chem. Phys. 61, 5435 (1974)

    Article  ADS  Google Scholar 

  104. H.J. Korsch, R. Möhlenkamp, J. Phys. B 11, 1941 (1978)

    Article  ADS  Google Scholar 

  105. P.H. Chavanis, in preparation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Henri Chavanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavanis, PH. Derivation of a generalized Schrödinger equation from the theory of scale relativity. Eur. Phys. J. Plus 132, 286 (2017). https://doi.org/10.1140/epjp/i2017-11528-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11528-3

Navigation