Skip to main content
Log in

Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Magnetohydrodynamic nanofluid flow and convective heat transfer are studied considering thermal radiation. Effects of magnetic field and shape of nanoparticles on viscosity and thermal conductivity of the nanofluid are taken into account. The solutions of final equations are obtained by the control volume-based finite-element method (CVFEM). Roles of shape of nanoparticles, radiation parameter, ferrofluid volume fraction, Hartmann and Rayleigh numbers are presented graphically. Results demonstrate that selecting the Platelet shape for Fe3O4 nanoparticles leads to maximum Nusselt number. Rate of heat transfer increases with increasing Rayleigh number and radiation parameter but it decreases with increasing Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Sheikholeslami, Eur. Phys. J. Plus 132, 55 (2017)

    Article  Google Scholar 

  2. Asma Khalid, Ilyas Khan, Sharidan Shafie, Eur. Phys. J. Plus 130, 57 (2015)

    Article  Google Scholar 

  3. M. Sheikholeslami, Houman B. Rokni, Int. J. Heat Mass Transfer 107, 288 (2017)

    Article  Google Scholar 

  4. Fatih Selimefendigil, Hakan F. Öztop, J. Mol. Liq. 216, 67 (2016)

    Article  Google Scholar 

  5. Lisi Jia, Ying Chen, Shijun Lei, Appl. Energy 162, 1670 (2016)

    Article  Google Scholar 

  6. Ahmed A. Hussien, Mohd Z. Abdullah, Moh’d A. Al-Nimr, Appl. Energy 164, 733 (2016)

    Article  Google Scholar 

  7. M. Sheikholeslami, D.D. Ganji, J. Taiwan Inst. Chem. Eng. 65, 43 (2016)

    Article  Google Scholar 

  8. Asma Khalid, Ilyas Khan, Sharidan Shafie, J. Mol. Liq. 221, 1175 (2016)

    Article  Google Scholar 

  9. Mohsen Sheikholeslami, Eur. Phys. J. Plus 131, 413 (2016)

    Article  Google Scholar 

  10. M. Sheikholeslami, S.A. Shehzad, Int. J. Heat Mass Transfer 106, 1261 (2017)

    Article  Google Scholar 

  11. A. Zeeshan, R. Ellahi, M. Hassan, Eur. Phys. J. Plus 129, 261 (2014)

    Article  Google Scholar 

  12. Mohsen Sheikholeslami Kandelousi, Eur. Phys. J. Plus 129, 248 (2014)

    Article  Google Scholar 

  13. S. Nadeem, A.U. Khan, S. Saleem, Eur. Phys. J. Plus 131, 261 (2016)

    Article  Google Scholar 

  14. M. Sheikholeslami, M.M. Rashidi, Eur. Phys. J. Plus 130, 115 (2015)

    Article  Google Scholar 

  15. T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Comput. Methods Appl. Mech. Eng. 315, 467 (2017)

    Article  ADS  Google Scholar 

  16. Mikhail A. Sheremet, Ioan Pop, Natalia C. Roşca, J. Taiwan Inst. Chem. Eng. 61, 211 (2016)

    Article  Google Scholar 

  17. M. Sheikholeslami, R. Ellahi, Int. J. Heat Mass Transfer 89, 799 (2015)

    Article  Google Scholar 

  18. Noreen Sher Akbar, Energy 82, 23 (2015)

    Article  Google Scholar 

  19. Mohsen Sheikholeslami, Int. J. Heat Mass Transfer 92, 339 (2016)

    Article  Google Scholar 

  20. M. Sheikholeslami, J. Mol. Liq. 234, 364 (2017)

    Article  Google Scholar 

  21. M. Sheikholeslami, Houman B. Rokni, J. Mol. Liq. 232, 390 (2017)

    Article  Google Scholar 

  22. M. Sheikholeslami, J. Mol. Liq. 231, 555 (2017)

    Article  Google Scholar 

  23. M. Sheikholeslami, M. Shamlooei, Int. J. Hydrogen Energy 42, 5708 (2017)

    Article  Google Scholar 

  24. Mohsen Sheikholeslami, Physica B 516, 55 (2017)

    Article  Google Scholar 

  25. T. Hayat, T. Muhammad, S.A. Shehzad, A. Alsaedi, Adv. Powder Technol. 27, 504 (2016)

    Article  Google Scholar 

  26. M. Sheikholeslami, M.M. Bhatti, Int. J. Heat Mass Transfer 109, 115 (2017)

    Article  Google Scholar 

  27. Mohsen Sheikholeslami, J. Mol. Liq. 229, 137 (2017)

    Article  Google Scholar 

  28. M. Sheikholeslami, Phys. Lett. A 381, 494 (2017)

    Article  ADS  Google Scholar 

  29. Mohsen Sheikholeslami, J. Mol. Liq. 225, 903 (2017)

    Article  Google Scholar 

  30. M. Sheikholeslami, Int. J. Hydrogen Energy 42, 821 (2017)

    Article  Google Scholar 

  31. Mohsen Sheikholeslami, Ali J. Chamkha, Numer. Heat Transf. A 69, 1186 (2016)

    Article  ADS  Google Scholar 

  32. M. Sheikholeslami, M.M. Bhatti, Int. J. Heat Mass Transfer 111, 1039 (2017)

    Article  Google Scholar 

  33. Mohsen Sheikholeslami, Ali J. Chamkha, Numer. Heat Transf. A 69, 781 (2016)

    Article  ADS  Google Scholar 

  34. Mohsen Sheikholeslami, Shirley Abelman, IEEE Trans. Nanotechnol. 14, 561 (2015)

    Article  ADS  Google Scholar 

  35. M. Sheikholeslami, R. Ellahi, Z. Naturforsch. A 70, 115 (2015)

    Google Scholar 

  36. M. Sheikholeslami, J Braz. Soc. Mech. Sci. Eng. 37, 1623 (2015)

    Article  Google Scholar 

  37. Noreen Sher Akbar, M. Raza, R. Ellahi, Eur. Phys. J. Plus 129, 185 (2014)

    Article  Google Scholar 

  38. M. Sheikholeslami, A. Zeeshan, Comput. Methods Appl. Mech. Eng. 320, 68 (2017)

    Article  ADS  Google Scholar 

  39. Mohsen Sheikholeslami Kandelousi, Phys. Lett. A 378, 3331 (2014)

    Article  ADS  Google Scholar 

  40. R. Ellahi, M. Hassan, A. Zeeshan, Int. J. Heat Mass Transfer 81, 449 (2015)

    Article  Google Scholar 

  41. Lijun Wang, Yongheng Wang, Xiaokang Yan, Xinyong Wang, Biao Feng, Int. Commun. Heat Mass Transf. 72, 23 (2016)

    Article  Google Scholar 

  42. Mohsen Sheikholeslami, Davood Domairry Ganji, Applications of Nanofluid for Heat Transfer Enhancement (William Andrew, Elsevier, 2017)

  43. B.S. Kim, D.S. Lee, M.Y. Ha, H.S. Yoon, Int. J. Heat Mass Transfer 51, 1888 (2008)

    Article  Google Scholar 

  44. K. Khanafer, K. Vafai, M. Lightstone, Int. J. Heat Mass Transfer 46, 3639 (2003)

    Article  Google Scholar 

  45. N. Rudraiah, R.M. Barron, M. Venkatachalappa, C.K. Subbaraya, Int. J. Eng. Sci. 33, 1075 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houman B. Rokni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Rokni, H.B. Magnetic nanofluid natural convection in the presence of thermal radiation considering variable viscosity. Eur. Phys. J. Plus 132, 238 (2017). https://doi.org/10.1140/epjp/i2017-11498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11498-4

Navigation