Skip to main content
Log in

Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant \( \alpha\) is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Miroshnichenko, S. Flach, Y. Kivshar, Rev. Mod. Phys. 82, 2257 (2010)

    Article  ADS  Google Scholar 

  2. H. Eleuch, I. Rotter, Eur. Phys. J. D 69, 229 (2015) DOI:10.1140/epjd/e2015-60389-7

    Article  ADS  Google Scholar 

  3. O. Xeridat, C. Poli, O. Legrand, F. Mortessagne, P. Sebbah, Phys. Rev. E 80, 035201(R) (2009)

    Article  ADS  Google Scholar 

  4. C. Poli, O. Legrand, F. Mortessagne, Phys. Rev. E 82, 055201 (2010)

    Article  ADS  Google Scholar 

  5. E. Graefe, H. Korsch, A. Rush, R. Schubert, J. Phys. A 48, 055301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  6. J. Gros, U. Kuhl, O. Legrand, F. Mortessagne, E. Richalot, D. Savin, Phys. Rev. Lett. 113, 224101 (2014)

    Article  ADS  Google Scholar 

  7. P. Xiao-Feng, F. Yuan-ping, Quantum Mechanics in Nonlinear Systems (World Scientific, 2005)

  8. G. Reinisch, Phys. Rev. A 70, 033613 (2004)

    Article  ADS  Google Scholar 

  9. G. Reinisch, Phys. Rev. Lett. 99, 120402 (2007)

    Article  ADS  Google Scholar 

  10. B. Huttner, A. Muller, J.D. Gautier, H. Zbinden, N. Gisin, Phys. Rev. A 54, 3783 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Reinisch, V. Gudmundsson, Eur. Phys. J. B 84, 699 (2011)

    Article  ADS  Google Scholar 

  12. N.K. Efremidis, K. Hizanidis, Phys. Rev. Lett. 101, 143903 (2008)

    Article  ADS  Google Scholar 

  13. R.P. Feynman, QED: The Strange Theory of Light and Matter, (Princeton, 1986) chapt. 4

  14. G. Reinisch, V. Gudmundsson, Physica D 241, 902 (2012)

    Article  ADS  Google Scholar 

  15. F.H. Selem, Nonlinearity 24, 1795 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Kurth, SIAM J. Math. Anal. 36, 967 (2005)

    Article  Google Scholar 

  17. J. Bec, private communication (2010)

  18. D. Pfannkuche, R. Gerhardts, P. Maksym, V. Gudmundsson, Physica B 189, 6 (1993)

    Article  ADS  Google Scholar 

  19. D. Pfannkuche, V. Gudmundsson, P. Maksym, Phys. Rev. B 47, 2244 (1993)

    Article  ADS  Google Scholar 

  20. W. Kohn, Phys. Rev. 123, 1242 (1961)

    Article  ADS  Google Scholar 

  21. S.M. Reimann, M. Manninen, Rev. Mod. Phys. 74, 1283 (2002)

    Article  ADS  Google Scholar 

  22. A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, 1996)

  23. W.H. Louisell, Radiation and Noise in Quantum Electronics (McGraw-Hill Book Company, 1964)

  24. G. Reinisch, J. DeFreitasPacheco, P. Valiron, Phys. Rev. A 63, 042505 (2001)

    Article  ADS  Google Scholar 

  25. V. Gudmundsson, S. Hauksson, A. Johnsen, G. Reinisch, A. Manolescu, C. Besse, G. Dujardin, Ann. Phys. 526, 235 (2014)

    Article  Google Scholar 

  26. M.R. Schafroth, Phys. Rev. 100, 463 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  27. G. Reinisch, V. Gudmundsson, A. Manolescu, Phys. Lett. A 378, 1566 (2014)

    Article  ADS  Google Scholar 

  28. R.B. Laughlin, The Quantum Hall Effect (Springer, 1987)

  29. C. Cohen-Tannoudji, J. Dupont-Roc, G. Gryndberg, Photons et atomes: Introduction a l’electrodynamique quantique (InterEditions, Editions du CNRS (Paris), 1987)

  30. F. Mandl, Introduction to Quantum Field Theory (Interscience, 1959)

  31. I.D. Lawrie, A Unified Grand Tour of Theoretical Physics (Adam Hilger, 1990)

  32. C. Cohen-Tannoudji, J. Dupont-Roc, G. Gryndberg, Processus d’interaction entre photons et atomes (InterEditions, Editions du CNRS (Paris), 1988)

  33. V. Berestetski, E. Lifchitz, L. Pitayevski, Quantum Electrodynamics (Mir, Moskow, 1989)

  34. L. Di Menza, ESAIM: Math. Modell. Numer. Anal. 43, 173 (2009)

    Article  MathSciNet  Google Scholar 

  35. L. Di Menza, F. Hadj Selem, Numerical study of solitons for nonlinear Schrödinger Equation with harmonic potential, preprint (2011)

  36. C. Steinebach, C. Schüller, D. Heitmann, Phys. Rev. 59, 10240 (1999)

    Article  Google Scholar 

  37. C. Steinebach, C. Schüller, D. Heitmann, Phys. Rev. 61, 15600 (2000)

    Article  Google Scholar 

  38. C. McDonald, G. Orlando, J. Abraham, D. Hochstuhl, M. Bonitz, T. Brabec, Phys. Rev. Lett. 111, 256801 (2013)

    Article  ADS  Google Scholar 

  39. A. Barone, G. Paterno, Physics and Applications of the Josephson Effect (Wiley, 1982) ISBN 0-471-01469-9

  40. L.N. Cooper, Phys. Rev. 104, 1189 (1956)

    Article  ADS  Google Scholar 

  41. J. Bardeen, J. Mod. Phys. 23, 261 (1951)

    Article  ADS  Google Scholar 

  42. A.J. Leggett, Nat. Phys. 2, 134 (2006)

    Article  Google Scholar 

  43. E. Fermi, J. Pasta, S. Ulam, Tech. Rep., Los Alamos report LA-1940

  44. T. Dauxois, M. Peyrard, S. Ruffo, Eur. J. Phys. 26, S3 (2005) arXiv:nlin/0501053

    Article  Google Scholar 

  45. M. Remoissenet, Waves Called Solitons: Concepts and Experiments (Springer, 1999)

  46. P. Bergé, Y. Pomeau, C. Vidal, L’ordre dans le chaos (Hermann, 1984) ISBN 2 7056 5980 3

  47. T.M. Evans, M.T. Murphy, J.B. Whitmore, Mon. Not. R. Acad. Sci. 445, 128 (2014)

    Article  ADS  Google Scholar 

  48. A. Songaila, L.L. Cowie, Astrophys. J. 793, 103 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert C. Reinisch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reinisch, G., Gazeau, M. Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation. Eur. Phys. J. Plus 131, 220 (2016). https://doi.org/10.1140/epjp/i2016-16220-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16220-6

Navigation