Skip to main content
Log in

The two lowest eigenvalues of the harmonic oscillator in the presence of a Gaussian perturbation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this note, we consider a one-dimensional quantum mechanical particle constrained by a parabolic well perturbed by a Gaussian potential. As the related Birman–Schwinger operator is trace class, the Fredholm determinant can be exploited in order to compute the modified eigenenergies which differ from those of the harmonic oscillator due to the presence of the Gaussian perturbation. By taking advantage of Wang’s results on scalar products of four eigenfunctions of the harmonic oscillator, it is possible to evaluate quite accurately the two lowest lying eigenvalues as functions of the coupling constant \(\lambda \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.D. Landau, L.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1959)

    MATH  Google Scholar 

  2. S. Fassari, F. Rinaldi, Exact calculation of the trace of the Birman-Schwinger operator of the one-dimensional harmonic oscillator perturbed by an attractive Gaussian potential. Nanosyst. Phys. Chem. Math. 10(6), 608–615 (2019)

    Article  Google Scholar 

  3. M. Reed, B. Simon, Fourier Analysis, Methods in Modern Mathematical Physics (Academic Press, New York, 1975)

    MATH  Google Scholar 

  4. M. Reed, B. Simon, Analysis of Operators Methods in Modern Mathematical Physics (Academic Press, New York, 1978)

    MATH  Google Scholar 

  5. S. Fassari, A note on the eigenvalues of the Hamiltonian of the harmonic oscillator perturbed by the potential \(\frac{\lambda x^2}{1+gx^2}\). Rep. Math. Phys. 37(2), 283–293 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Fassari, G. Inglese, On the eigenvalues of the Hamiltonian of the harmonic oscillator with the interaction \(\frac{\lambda x^2}{1+gx^2}\) II. Rep. Math. Phys. 39(1), 77–86 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  7. G. Muchatibaya, S. Fassari, F. Rinaldi, J. Mushanyu, A note on the discrete spectrum of Gaussian wells (I): the ground state energy in one dimension. Adv. Math. Phys (2016). https://doi.org/10.1155/2016/2125769

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Fassari, M. Gadella, L.M. Nieto, F. Rinaldi, On the spectrum of the 1D Schrödinger Hamiltonian perturbed by an attractive Gaussian potential. Acta Polytechnica 57, 385–390 (2017)

    Article  Google Scholar 

  9. S. Albeverio, S. Fassari, M. Gadella, L.M. Nieto, F. Rinaldi, The Birman-Schwinger operator for a parabolic quantum well in a zero-thickness layer in the presence of a two-dimensional attractive Gaussian impurity. Front. Phys. 7, 102 (2019). https://doi.org/10.3389/fphy.2019.00102

    Article  Google Scholar 

  10. B.L. Earl, The harmonic oscillator with a Gaussian perturbation: evaluation of the integrals and example applications. J. Chem. Educ. 85, 453–457 (2008)

    Article  Google Scholar 

  11. M. Ali, M. Elsaid, A. Shaer, Magnetization and magnetic susceptibility of GaAs quantum dot with Gaussian confinement in applied magnetic field. Jordan J. Phys. 12(3), 247–254 (2019)

    Google Scholar 

  12. S. Fassari, M. Gadella, M.L. Glasser, L.M. Nieto, Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity. Ann. Phys. 389, 48–62 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Klaus, A remark about weakly coupled one-dimensional Schrödinger operators. Helv. Phys. Acta 52, 223 (1979)

    MathSciNet  Google Scholar 

  14. S. Fassari, An estimate regarding one-dimensional point interactions. Helv. Phys. Acta 68, 121–125 (1995)

    MathSciNet  MATH  Google Scholar 

  15. W.-M. Wang, Pure Point Spectrum of the Floquet Hamiltonian for the Quantum Harmonic Oscillator Under Time Quasi-Periodic Perturbations. Commun. Math. Phys. 277, 459–496 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. B.S. Mityagin, P. Siegl, Root system of singular perturbations of the harmonic oscillator type operators. Lett. Math. Phys. 106, 147–167 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Mityagin, The spectrum of a harmonic oscillator operator perturbed by point interactions. Int. J. Theor. Phys. 53, 1–18 (2014)

    Article  Google Scholar 

  18. S. Fassari, G. Inglese, On the spectrum of the harmonic oscillator with a \(\delta -\)type perturbation. Helv. Phys. Acta 67, 650–659 (1994)

    MathSciNet  MATH  Google Scholar 

  19. S. Fassari, G. Inglese, Spectroscopy of a three-dimensional isotropic harmonic oscillator with a \(\delta -\)type perturbation. Helv. Phys. Acta 69, 130–140 (1996)

    MathSciNet  MATH  Google Scholar 

  20. S. Fassari, G. Inglese, On the spectrum of the harmonic oscillator with a \(\delta -\)type perturbation II. Helv. Phys. Acta 70, 858–865 (1997)

    MathSciNet  MATH  Google Scholar 

  21. S. Fassari, F. Rinaldi, On the spectrum of the Schrödinger Hamiltonian of the one-dimensional harmonic oscillator perturbed by two identical attractive point interactions. Rep. Math. Phys. 69(3), 353–370 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Albeverio, S. Fassari, F. Rinaldi, A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator perturbed by an attractive \(\delta ^{\prime }\)-interaction centred at the origin: double degeneracy and level crossing. J. Phys. A Math. Theor. 46, 385305 (2013)

    Article  ADS  Google Scholar 

  23. S. Albeverio, S. Fassari, F. Rinaldi, The Hamiltonian of the harmonic oscillator with an attractive \(\delta ^{\prime }\)-interaction centred at the origin as approximated by the one with a triple of attractive \(\delta \)-interactions. J. Phys. A Math. Theor. 49, 025302 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. S. Albeverio, S. Fassari, F. Rinaldi, Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive \(\delta \)-impurities symmetrically situated around the origin. Nanosyst. Phys. Chem. Math. 7(2), 268–289 (2016)

    Article  Google Scholar 

  25. S. Albeverio, S. Fassari, F. Rinaldi, Spectral properties of a symmetric three-dimensional quantum dot with a pair ofidentical attractive \(\delta \)-impurities symmetrically situated around the origin II. Nanosyst. Phys. Chem. Math. 7(5), 803–815 (2016)

    Article  Google Scholar 

  26. S. Fassari, M. Gadella, M.L. Glasser, L.M. Nieto, F. Rinaldi, Level crossings of eigenvalues of the Schrödinger Hamiltonian of the isotropic harmonic oscillator perturbed by a central point interaction in different dimensions. Nanosyst. Phys. Chem. Math. 9(2), 179–186 (2018)

    Article  Google Scholar 

  27. S. Fassari, M. Gadella, L.M. Nieto, F. Rinaldi, Spectral properties of the 2D Schrödinger Hamiltonian with various solvable confinements in the presence of a central point perturbation. Phys. Scr. 94, 055202 (2019)

    Article  ADS  Google Scholar 

  28. G.B. Arfken, Mathematical Methods for Physicists, 3rd edn. (Academic Press, Cambridge, 1985)

    MATH  Google Scholar 

  29. F. Gesztesy, K. Kirsten, On traces and modified Fredholm determinants for half-line Schrödinger operators with purely discrete spectra. Quart. Appl. Math. 77, 615–630 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

S. Fassari’s contribution to this work has been made possible by the financial support granted by the Government of the Russian Federation through the ITMO University Fellowship and Professorship Programme. S. Fassari would like to thank Prof. Igor Yu. Popov and the entire staff at the Department of Higher Mathematics, ITMO University, St. Petersburg, for their warm hospitality throughout his stay. L.M. Nieto acknowledges partial financial support to Junta de Castilla y León and FEDER (Projects VA137G18 and BU229P18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fassari.

Appendix: proofs of some of the previous results

Appendix: proofs of some of the previous results

In this appendix, we wish to provide the reader with the mathematical details of some results used throughout the article.

1.1 Calculation of the optimal range of admissible \(\lambda \) ensuring the invertibility of \(\lambda M_{1/2}^{(0)}\)

Theorem A

The operator \(\left[ 1-\lambda M_{1/2}^{(0)} \right] ^{-1}\)

$$\begin{aligned} M_{1/2}^{(0)}=\sum _{n=1}^{\infty } \frac{e^{-(\cdot )^2/2}|\psi _n \rangle \langle \psi _n|e^{-(\cdot )^2/2}}{n}, \end{aligned}$$

exists for any positive \(\lambda <\frac{1}{\sqrt{2} \ln 2} \approx 1.020\).

Proof

As \(M_{1/2}^{(0)}>0\), its trace class norm is exactly its trace, so that

$$\begin{aligned} \text {tr} [M_{1/2}^{(0)}]=\sum _{m=0}^{\infty }\sum _{n=1}^{\infty } \frac{(\psi _m,e^{-(\cdot )^2/2}\psi _n)^2}{n}=\sum _{n=1}^{\infty } \frac{ \left| \left| e^{-(\cdot )^2/2}\psi _n \right| \right| _2^2}{n}, \end{aligned}$$
(A.1)

\(\square \)

as follows easily from the orthonormality of the eigenfunctions of the harmonic oscillator. Since

$$\begin{aligned} \left( \psi _n,e^{-(\cdot )^2}\psi _n \right) =\sqrt{\pi }\left( \psi _n, \psi _0^2 \psi _n \right) =\sqrt{\pi } \frac{\psi _{2n}^2(0)}{\sqrt{2}}, \end{aligned}$$

the rhs of (A.1) is equal to

$$\begin{aligned} \sqrt{2 \pi } \sum _{n=1}^{\infty } \frac{\psi _{2n}^2(0)}{2n}=\sqrt{2 \pi } \lim _{\epsilon \rightarrow 0_{+}} \left[ \sum _{n=0}^{\infty } \frac{\psi _{2n}^2(0)}{2n+\epsilon } - \frac{\psi _0^2(0)}{\epsilon } \right] . \end{aligned}$$
(A.2)

By mimicking what was done in [18,19,20], the rhs of (A.2) can be written as

$$\begin{aligned}&\sqrt{2 \pi } \lim _{\epsilon \rightarrow 0_{+}} \left[ \left( H_0-\frac{1}{2}+\epsilon \right) ^{-1}(0,0) - \frac{1}{\sqrt{\pi }\epsilon } \right] \nonumber \\&\quad =\sqrt{2 \pi } \lim _{\epsilon \rightarrow 0_{+}} \left[ \frac{1}{\sqrt{\pi }}\int _0^1 \frac{s^{\epsilon -1}}{(1-s^2)^{1/2}}\mathrm{d}s - \frac{1}{\sqrt{\pi }\epsilon } \right] . \end{aligned}$$
(A.3)

After expressing the second term inside the square brackets as an integral and simplifying the integrand, the latter limit becomes

$$\begin{aligned} \sqrt{2} \lim _{\epsilon \rightarrow 0_{+}} \int _0^1 \frac{s^{\epsilon -1}\left[ 1-(1-s^2)^{1/2}\right] }{(1-s^2)^{1/2}}\mathrm{d}s=\sqrt{2} \lim _{\epsilon \rightarrow 0_{+}} \int _0^1 \frac{s^{\epsilon +1}}{(1-s^2)^{1/2}\left[ 1+(1-s^2)^{1/2}\right] }\mathrm{d}s.\nonumber \\ \end{aligned}$$
(A.4)

As we may perform the limit inside the integral, the above rhs becomes

$$\begin{aligned} \sqrt{2} \int _0^1 \frac{s}{(1-s^2)^{1/2}\left[ 1+(1-s^2)^{1/2}\right] }\mathrm{d}s=-\sqrt{2} \int _0^1 \frac{\mathrm{d}(1-s^2)^{1/2}}{\mathrm{d}s}\frac{1}{\left[ 1+(1-s^2)^{1/2}\right] }\mathrm{d}s,\nonumber \\ \end{aligned}$$
(A.5)

which, after setting \(y=(1-s^2)^{1/2}\), gets transformed into

$$\begin{aligned} \sqrt{2} \int _0^1 \frac{1}{1+y}dy=\sqrt{2} \left[ \ln (1+y) \right] _0^1=\sqrt{2} \ln 2. \end{aligned}$$
(A.6)

Therefore, \(\left| \left| M_{1/2}^{(0)} \right| \right| _1=\sqrt{2} \ln 2\). Then, for any \(\lambda <\frac{1}{\sqrt{2} \ln 2}\), we have \(\lambda \left| \left| M_{1/2}^{(0)} \right| \right| _1 <1\), which ensures the existence of \(\left[ 1-\lambda M_{1/2}^{(0)} \right] ^{-1}\).

Before closing this subsection, it might be worth noting that the same result could have been achieved by expressing the integral on the rhs of (A.3) as a ratio of values of the gamma function, as was done in [22, 24,25,26].

1.2 Proof of the expression for \(\epsilon _0(\lambda )\) given in equation (3.12)

Theorem B

The following positive series converges and the sum is

$$\begin{aligned} \sum _{n=1}^{\infty } \frac{ \psi _{2n}^2(0)}{2^{2n+1}n}=\frac{\ln (8-4\sqrt{3})}{\sqrt{\pi }}. \end{aligned}$$
(A.7)

Proof

First of all, we notice that:

$$\begin{aligned}&\sum _{n=1}^{\infty } \frac{ \psi _{2n}^2(0)}{2^{2n+1}n} =\sum _{n=1}^{\infty } \frac{ \psi _{2n}^2(0)}{2^{2n+1}} \int _0^{1} x^{n-1}\mathrm{d}x \nonumber \\&\quad =\int _0^{1} \left[ \sum _{n=1}^{\infty } \frac{ \psi _{2n}^2(0)}{2^{2n+1}}\, x^{n-1} \right] \mathrm{d}x =\int _0^{1} \left[ \sum _{n=1}^{\infty } \psi _{2n}^2(0) \left( \frac{x}{4}\right) ^n \right] \frac{\mathrm{d}x}{2x}. \end{aligned}$$
(A.8)

\(\square \)

As follows in a rather straightforward manner from the definition of the normalised eigenfunctions of the harmonic oscillator (2.6) (see [16, 18, 27]),

$$\begin{aligned} \psi _{2n}(0)= \frac{H_{2n}(0)}{\sqrt{2^{2n} (2n)! \sqrt{\pi }}}, \end{aligned}$$

and as is well known (see [3, 28])

$$\begin{aligned} H_{2n}(0)= (-1)^n \frac{(2n)!}{n!}, \end{aligned}$$

so that the series inside the square brackets on the rhs of (A.8) becomes

$$\begin{aligned}&\sum _{n=1}^{\infty } \psi _{2n}^2(0) \left( \frac{x}{4}\right) ^n = \sum _{n=1}^{\infty } \frac{ (2n)!}{\sqrt{\pi }\, 2^{2n}\, (n!)^2} \left( \frac{x}{4}\right) ^n \nonumber \\&\quad = \frac{1}{\sqrt{\pi }} \sum _{n=1}^{\infty } \frac{ (2n)!}{(n!)^2} \left( \frac{x}{2^4} \right) ^n = \frac{1}{\sqrt{\pi }} \left( \frac{2}{\sqrt{4-x}}-1\right) . \end{aligned}$$
(A.9)

Going with this result to the rhs of (A.8) and integrating from 0 to 1, we get:

$$\begin{aligned} \sum _{n=1}^{\infty } \frac{ \psi _{2n}^2(0)}{2^{2n+1}n} = \frac{1}{2\sqrt{\pi }} \int _0^{1} \left( \frac{2}{\sqrt{4-x}}-1\right) \frac{\mathrm{d}x}{x}= \frac{\ln (8-4\sqrt{3})}{\sqrt{\pi }}, \end{aligned}$$
(A.10)

which completes the proof of our claim.

1.3 Sum of the series in equation (4.6)

Theorem C

The following positive series converges and the sum is

$$\begin{aligned} \sum _{n=1}^{\infty } \frac{(n+1)\psi _{2(n+1)}^2(0)}{2^{2(n+1)}n}=\frac{2\sqrt{3}-3\left( 1-\ln [8-4\sqrt{3}] \right) }{12\sqrt{\pi }}. \end{aligned}$$
(A.11)

Proof

The proof is similar to the previous one: Using the eigenfunctions (2.6)

$$\begin{aligned} \psi _{2(n+1)}(0)= \frac{H_{2(n+1)}(0)}{\sqrt{2^{2(n+1)} (2n+2)! \sqrt{\pi }}}, \end{aligned}$$
(A.12)

and the fact that

$$\begin{aligned} H_{2(n+1)}(0)= (-1)^{n+1} \frac{(2n+2)!}{(n+1)!}, \end{aligned}$$

\(\square \)

it is straightforward to deduce the following

$$\begin{aligned}&\sum _{n=1}^{\infty } \frac{(n+1)\psi _{2(n+1)}^2(0)}{2^{2(n+1)}n}= \sum _{n=1}^{\infty } \frac{\psi _{2(n+1)}^2(0)}{2^{2(n+1)}}\, (n+1) \int _0^{1} x^{n-1}\mathrm{d}x\\&\quad =\int _0^{1} \left[ \sum _{n=1}^{\infty } \frac{\psi _{2(n+1)}^2(0)}{2^{2(n+1)}}\, (n+1)\, x^{n} \right] \frac{\mathrm{d}x}{x} =\int _0^{1} \frac{\mathrm{d}}{\mathrm{d}x }\left[ \sum _{n=1}^{\infty } \frac{\psi _{2(n+1)}^2(0)}{2^{2(n+1)}}\, x^{n+1} \right] \frac{\mathrm{d}x}{x}\\&\quad =\int _0^{1} \frac{\mathrm{d}}{\mathrm{d}x }\left[ \sum _{n=1}^{\infty } \psi _{2(n+1)}^2(0)\, \left( \frac{x}{2^2}\right) ^{n+1} \right] \frac{\mathrm{d}x}{x}\\&\quad =\int _0^{1} \frac{\mathrm{d}}{\mathrm{d}x }\left[ \sum _{n=1}^{\infty } \frac{(2n+2)!}{2^{2(n+1)} (n+1)!^2 \sqrt{\pi }} \left( \frac{x}{2^2}\right) ^{n+1} \right] \frac{\mathrm{d}x}{x}\\&\quad =\frac{1}{\sqrt{\pi }} \int _0^{1} \frac{\mathrm{d}}{\mathrm{d}x }\left[ \sum _{n=1}^{\infty } \frac{(2n+2)!}{ (n+1)!^2 } \left( \frac{x}{2^4}\right) ^{n+1} \right] \frac{\mathrm{d}x}{x} =\frac{1}{\sqrt{\pi }} \int _0^{1} \frac{\mathrm{d}}{\mathrm{d}x }\left[ \frac{2}{\sqrt{4-x}}-1-\frac{x}{8} \right] \frac{\mathrm{d}x}{x}\\&\quad = \frac{1}{12\sqrt{\pi }} \left( 2\sqrt{3}-3\left[ 1-\ln (8-4\sqrt{3}) \right] \right) , \end{aligned}$$

which completes our proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fassari, S., Nieto, L.M. & Rinaldi, F. The two lowest eigenvalues of the harmonic oscillator in the presence of a Gaussian perturbation. Eur. Phys. J. Plus 135, 728 (2020). https://doi.org/10.1140/epjp/s13360-020-00761-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00761-6

Navigation