Skip to main content
Log in

Core-envelope and regular models in Einstein-Maxwell fields

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

New classes of exact solutions which could serve as sources for the Reissner-Nordstrom metric representing the exterior gravitational field of an isolated charged sphere are derived. Firstly, we sacrifice the requirement that the stellar centre is free of a singularity and then obtain a core-envelope model. The charged fluid envelope is matched suitably to the neutral core and the vacuum exterior solution. Next we investigate models of charged stars that are regular at the stellar centre. The Einstein-Maxwell system of partial differential equations is reduced to the study of a single first-order differential equation in which two of the matter or geometrical variables must be specified at the outset. In each case mentioned above, new exact models are found by choosing functional forms for the electric field intensity and one of the gravitational potentials. A Riccati equation is then solved to obtain the remaining potential. The charged spherical shell model as well as the non-singular models are shown to display necessary qualitative features that are demanded for physical acceptability. It is shown that the regular model has a vanishing pressure-free hypersurface. The density and pressure profiles are positive and monotonically decreasing outwards from the centre of the sphere for a chosen set of parameters. The weak strong and dominant energy conditions are also satisfied. A drawback of the model is that the causality criterion is not satisfied within the fluid boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.W. Marcy, L.M. Weiss, E.A. Petigura, H. Isaacson, A.W. Howard, L.A. Buchhave, Proc. Natl. Acad. Sci. U.S.A. 111, 12659 (2014)

    Article  ADS  Google Scholar 

  2. R. Sharma, S. Mukherjee, Mod. Phys. Lett. A 17, 2535 (2002)

    Article  ADS  Google Scholar 

  3. R. Tikekar, K. Jotania, Gravit. Cosmol. 15, 129 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. R. Tikekar, V.O. Thomas, Pramana J. Phys. 64, 6 (2005)

    Article  ADS  Google Scholar 

  5. B.C. Paul, R. Tikekar, Gravit. Cosmol. 11, 244 (2005)

    MATH  ADS  Google Scholar 

  6. B.V. Ivanov, Phys. Rev. D 65, 104001 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. W.B. Bonnor, Z. Phys. 160, 59 (1960)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. U.S. Nilsson, C. Uggla, Ann. Phys. 286, 278 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. U.S. Nilsson, C. Uggla, Ann. Phys. 286, 292 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. S. Hansraj, D.D. Krupanandan, Int. J. Mod. Phys. D 22, 1350052 (2013)

    Article  ADS  Google Scholar 

  11. S. Hansraj, S.D. Maharaj, T. Mthethwa, Int. J. Theor. Phys. 53, 759 (2014)

    Article  MATH  Google Scholar 

  12. G. Fodor, arXiv:gr-qc/0011040v1 (2000)

  13. K. Lake, Phys. Rev. D 67, 104015 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  14. P. Boonserm, M. Visser, S. Weinfurtner, Phys. Rev. D 71, 124037 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. D. Martin, M. Visser, Phys. Rev. D 69, 104028 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  16. S.D. Maharaj, R. Maartens, Gen. Relativ. Gravit. 21, 899 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Hansraj, S.D. Maharaj, Int. J. Mod. Phys. D 15, 1311 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. M.R. Finch, J.E.F. Skea, Class. Quantum Grav. 6, 467 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.D. Walecka, Phys. Lett. B 59, 109 (1975)

    Article  ADS  Google Scholar 

  20. L. Herrera, J. Ponce de Leon, J. Math. Phys. 26, 2302 (1985)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. D.N. Pant, A. Sah, J. Math. Phys. 20, 2537 (1979)

    Article  ADS  Google Scholar 

  22. R. Tikekar, J. Math. Phys. 25, 1481 (1984)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. P.G. Whitman, R.C. Burch, Phys. Rev. D 24, 2049 (1981)

    Article  ADS  Google Scholar 

  24. A. Banerjee, N.O. Santos, J. Math. Phys. 22, 824 (1981)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. R. Maartens, S.D. Maharaj, Class. Quantum Grav. 7, 1961 (1990)

    Article  Google Scholar 

  26. W.B. Bonnor, Nature 204, 868 (1964)

    Article  MATH  ADS  Google Scholar 

  27. W.B. Bonnor, Mon. Not. R. Astron. Soc. 129, 443 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  28. W.B. Bonnor, S.B.P. Wickramasuriya, Mon. Not. R. Astron. Soc. 170, 643 (1975)

    Article  ADS  Google Scholar 

  29. U.K. De, A.K. Raychaudhari, Proc. R. Soc. Ser. A 303, 97 (1968)

    Article  ADS  Google Scholar 

  30. M.C. Durgapal, R. Bannerji, Phys. Rev. D 27, 328 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  31. M.C. Durgapal, R.S. Fuloria, Gen. Relativ. Gravit. 17, 671 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  32. N. Chamel, Mon. Not. R. Acad. Sci. 388, 737 (2008)

    Article  ADS  Google Scholar 

  33. J.P. Krisch, E.N. Glass, J. Math. Phys. 54, 082501 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  34. A.C. Gutiérrez-Piñeres, arXiv:1307.4446 [gr-qc]

  35. A.H. Buchdahl, Am. J. Phys. 39, 158 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  36. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars (Wiley, New York, 1983)

  37. S. Thirukkanesh, S.D. Maharaj, Math. Meth. Appl. Sci. 32, 684 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  38. K. Komathiraj, S.D. Maharaj, Class. Quantum Grav. 24, 4513 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  39. M. Wyman, Phys. Rev. 75, 116 (1949)

    Article  MathSciNet  Google Scholar 

  40. B. Kuchowicz, Acta Phys. Pol. B 1, 437 (1970)

    ADS  Google Scholar 

  41. Y.K. Gupta, M.A. Kumar, Gen. Relativ. Gravit. 37, 575 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. G. Chapline, arXiv:astro-ph/0503200 (2005)

  43. S.D. Maharaj, B. Chilambwe, S. Hansraj, Phys. Rev. D 91, 084049 (2015)

    Article  ADS  Google Scholar 

  44. S. Hansraj, B. Chilambwe, S.D. Maharaj, Eur. Phys. J. C 27, 277 (2015)

    Article  ADS  Google Scholar 

  45. B. Chilambwe, S. Hansraj, S.D. Maharaj, Int. J. Mod. Phys. D 24, 1550051 (2015)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudan Hansraj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hansraj, S., Maharaj, S. & Mlaba, S. Core-envelope and regular models in Einstein-Maxwell fields. Eur. Phys. J. Plus 131, 4 (2016). https://doi.org/10.1140/epjp/i2016-16004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2016-16004-0

Keywords

Navigation