Skip to main content
Log in

Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The present article addresses the classical problem of the natural convection flow past a vertical plate by considering visco-elastic nanofluid. The mathematical model is constructed by following the constitutive equations of the upper-convected Maxwell (UCM) fluid. The novel aspects of Brownian motion and thermophoresis are taken into account. The recently proposed condition of passively controlled wall nanoparticle volume fraction is used. The shooting approach combined with the fourth-fifth-order Runge-Kutta integration procedure is utilized for computing the numerical solutions. The results are in agreement with the available studies in limiting sense. Our results indicate that the velocity profile is parabolic and it decreases with an increment in the visco-elastic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, Int. J. Heat Mass Transfer. 57, 582 (2013).

    Article  Google Scholar 

  2. K.V. Wong, O.D. Leon, Adv. Mech. Eng. 2, 519659 (2010).

    Article  Google Scholar 

  3. J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).

    Article  Google Scholar 

  4. A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 49, 243 (2010).

    Article  Google Scholar 

  5. W.A. Khan, I. Pop, Int. J. Heat Mass Transfer 53, 2477 (2010).

    Article  Google Scholar 

  6. M. Mustafa, T. Hayat, I. Pop, S. Asghar, S. Obaidat, Int. J. Heat Mass Transfer 54, 5588 (2011).

    Article  Google Scholar 

  7. A. Aziz, W.A. Khan, Int. J. Therm. Sci. 52, 83 (2012).

    Article  Google Scholar 

  8. M. Mustafa, M.A. Farooq, T. Hayat, A. Alsaedi, PLoS ONE 8, e61859 (2013) DOI:10.1371/journal.pone.0061859.

    Article  ADS  Google Scholar 

  9. M. Mustafa, T. Hayat, A. Alsaedi, J. Mech. 29, 423 (2013).

    Article  Google Scholar 

  10. O.D. Makinde, W.A. Khan, Z.H. Khan, Int. J. Heat Mass Transfer 62, 526 (2013).

    Article  Google Scholar 

  11. M.M. Rashidi, S. Abelman, N. Freidoonimehr, Int. J. Heat Mass Transfer 62, 515 (2013).

    Article  Google Scholar 

  12. M. Turkyilmazoglu, ASME J. Heat Transfer 136, 031704 (2013) DOI:10.1115/1.4025730.

    Article  Google Scholar 

  13. M. Turkyilmazoglu, I. Pop, Int. J. Heat Mass Transfer 59, 167 (2013).

    Article  Google Scholar 

  14. A.V. Kuznetsov, D.A. Nield, Int. J. Therm. Sci. 77, 126 (2014).

    Article  Google Scholar 

  15. M. Sheikholeslami, M. Gorji-Bandpy, Powder Technol. 256, 490 (2014).

    Article  Google Scholar 

  16. M. Sheikholeslami, M. Gorji-Bandpy, D.D. Ganji, S. Soleimani, J. Mol. Liq. 194, 179 (2014).

    Article  Google Scholar 

  17. M.M. Rashidi, N. Freidoonimehr, A. Hosseini, O.A. Bég, T.K. Hung, Meccanica 49, 469 (2014).

    Article  Google Scholar 

  18. M. Mustafa, M. Nawaz, T. Hayat, A. Alsaedi, J. Aerospace Eng. 27, 04014006 (2014).

    Article  Google Scholar 

  19. A. Mushtaq, M. Mustafa, T. Hayat, A. Alsaedi, J. Taiwan Inst. Chem. Eng. 45, 1176 (2014).

    Article  Google Scholar 

  20. J.A. Khan, M. Mustafa, T. Hayat, M. Asif Farooq, A. Alsaedi, S.J. Liao, J. Molec. Liq. 194, 41 (2014).

    Article  Google Scholar 

  21. M. Mustafa, M.A. Farooq, T. Hayat, A. Alsaedi, S.J. Liao, J. Comput. Theor. Nanosci. 11, 1107 (2014).

    Article  Google Scholar 

  22. M. Mustafa, A. Mushtaq, T. Hayat, B. Ahmad, PLoS ONE 9, e103946 (2014) DOI:10.1371/journal.pone.0103946.

    Article  ADS  Google Scholar 

  23. K. Sadeghy, A.H. Najafi, M. Saffaripour, Int. J. Non-linear Mech. 40, 1220 (2005).

    Article  ADS  Google Scholar 

  24. K. Sadeghy, H. Hajibeygi, S.M. Taghavi, Int. J. Non-linear Mech. 41, 1242 (2006).

    Article  ADS  Google Scholar 

  25. M. Kumari, G. Nath, Int. J. Non-linear Mech. 44, 1048 (2009).

    Article  ADS  Google Scholar 

  26. T. Hayat, Z. Abbas, M. Sajid, Chaos Solitons Fractals 39, 840 (2009).

    Article  ADS  Google Scholar 

  27. B. Raftari, A. Yildirim, Comput. Math. Appl. 59, 3328 (2010).

    Article  MathSciNet  Google Scholar 

  28. S. Mukhopadhyay, Chin. Phys. Lett. 29, 054703 (2012) DOI:10.1088/0256-307X/29/5/054703.

    Article  Google Scholar 

  29. T. Hayat, Z. Iqbal, M. Mustafa, A. Alsaedi, Nucl. Eng. Des. 252, 242 (2012).

    Article  Google Scholar 

  30. M.S. Abel, J.V. Tawade, M.M. Nandeppanavar, Meccanica 47, 385 (2012).

    Article  MathSciNet  Google Scholar 

  31. T. Hayat, M. Mustafa, S.A. Shehzad, S. Obaidat, Int. J. Numer. Meth. Fluids 68, 233 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Shateyi, Bound. Val. Prob. 2013, 196 (2013) DOI:10.1186/1687-2770-2013-196.

    Article  MathSciNet  Google Scholar 

  33. S. Nadeem. R. Ul Haq, Z.H. Khan, J. Taiwan Inst. Chem. Eng. 45, 121 (2014).

    Article  Google Scholar 

  34. A. Mushtaq, M. Mustafa, T. Hayat, A. Alsaedi, J. Aerospace Eng. 27, 04014015 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mustafa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, M., Mushtaq, A. Model for natural convective flow of visco-elastic nanofluid past an isothermal vertical plate. Eur. Phys. J. Plus 130, 178 (2015). https://doi.org/10.1140/epjp/i2015-15178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15178-1

Keywords

Navigation