Skip to main content
Log in

Quantum ground-state entanglement for spin-1/2 alternating Heisenberg model in one spatial dimension

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum entanglement for a one-dimensional quantum antiferromagnetic-ferromagnetic spin-1/2 alternating Heisenberg chain is investigated by employing the infinite matrix product state representation. The entanglement entropies for the model are shown and the peaks of the entropies tell us the quantum phase transitions happen when the control parameter crosses its critical value. Besides, spontaneous magnetization is given and the critical exponent is extracted from the data. Finally, a finite-entanglement scaling of the von Neumann entropy and finite-entanglement scaling exponent are given with different truncation dimension, from which the type of the transition and its conformal anomaly parameter c are obtained at the critical point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge 2000).

  2. F.D.M. Haldane, Phys. Lett. A 93, 464 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  3. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  4. A. Books Harris, Phys. Rev. B 7, 3166 (1973).

    Article  ADS  Google Scholar 

  5. G.S. Uhrig, H.J. Schulz, Phys. Rev. B 54, R9624 (1996).

    Article  ADS  Google Scholar 

  6. T. Barnes et al., Phys. Rev. B 59, 11384 (1999).

    Article  ADS  Google Scholar 

  7. J. Ren, S. Zhu, Eur. Phys. J. D 50, 103 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  8. F. Heidrich-Meisner, I.P. McCulloch, A.K. Kolezhuk, Phys. Rev. B 80, 144417 (2009).

    Article  ADS  Google Scholar 

  9. A.W. Garrett et al., Phys. Rev. Lett. 79, 745 (1997).

    Article  ADS  Google Scholar 

  10. B. Lake et al., J. Phys. Condens. Matter 9, 10951 (1997).

    Article  ADS  Google Scholar 

  11. G. Xu et al., Phys. Rev. Lett. 84, 4465 (2000).

    Article  ADS  Google Scholar 

  12. S. Furukawa, M. Sato, S. Onoda, A. Furusaki, Phys. Rev. B 86, 094417 (2012).

    Article  ADS  Google Scholar 

  13. D. Peters, I.P. McCulloch, W. Selke, Phys. Rev. B 85, 054423 (2012).

    Article  ADS  Google Scholar 

  14. K. Hida, K. Takano, H. Suzuki, J. Phys. Soc. Jpn. 82, 064703 (2013).

    Article  ADS  Google Scholar 

  15. A. Langari, F. Pollmann, M. Siahatgar, J. Phys.: Condens. Matter 25, 406002 (2013).

    Google Scholar 

  16. K. Hida, J. Phys. Soc. Jpn. 83, 034707 (2014).

    Article  ADS  Google Scholar 

  17. E. Mehran, S. Mahdavifar, R. Jafari, Phys. Rev. A 89, 049903 (2014).

    Article  ADS  Google Scholar 

  18. R. Haghshenas, A. Langari, A.T. Rezakhani, J. Phys.: Condens. Matter 26, 456001 (2014).

    ADS  Google Scholar 

  19. N.B. Ivanov, J. Ummethum, J. Schnack, Eur. Phys. J. B 87, 226 (2014).

    Article  ADS  Google Scholar 

  20. J.C. Xavier, Phys. Rev. B 81, 224404 (2010).

    Article  ADS  Google Scholar 

  21. D.V. Dmitriev, V.Ya. Krivnov, A.A. Ovchinnikov, Phys. Rev. B 65, 172409 (2002).

    Article  ADS  Google Scholar 

  22. M.B. Stone, W. Tian, M.D. Lumsden et al., Phys. Rev. Lett. 99, 087204 (2007).

    Article  ADS  Google Scholar 

  23. K. Hida, Phys. Rev. B 45, 2207 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Yamanaka, Y. Hatsugai et al., Phys. Rev. B 48, 9555 (1993).

    Article  ADS  Google Scholar 

  25. G. Vidal, Phys. Rev. Lett. 98, 070201 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  26. F. Verstraete, D. Porras, J.I. Cirac, Phys. Rev. Lett. 93, 227205 (2004).

    Article  ADS  Google Scholar 

  27. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge 1999).

  28. J.I. Latorre, E. Rico, G. Vidal, Quantum Inf. Comput. 4, 48 (2004).

    MATH  MathSciNet  Google Scholar 

  29. G. Refael, J.E. Moore, Phys. Rev. Lett. 93, 260602 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  30. W. Dür, L. Hartmann, M. Hein, M. Lewenstein, H.-J. Briegel, Phys. Rev. Lett. 94, 097203 (2005).

    Article  ADS  Google Scholar 

  31. G. Vidal, arXiv:0912.1651.

  32. D.A. Meyer, N.R. Wallach, J. Math. Phys. 43, 4273 (2002).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. X. Wang, H. Fu, A.I. Solomon, J. Phys. A 34, 11307 (2001).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001).

    Article  ADS  Google Scholar 

  35. D. Gunlycke, S. Bose, V.M. Kendon, V. Vedral, Phys. Rev. A 64, 042302 (2001).

    Article  ADS  Google Scholar 

  36. X. Wang, Phys. Rev. A 64, 012313 (2001).

    Article  ADS  Google Scholar 

  37. W.K. Wootters, Contemp. Math. 305, 299 (2002).

    Article  MathSciNet  Google Scholar 

  38. L. Bombelli, R.K. Koul, J. Lee, R.D. Sorkin, Phys. Rev. D 34, 373 (1986).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. M. Srednicki, Phys. Rev. Lett. 71, 666 (1993).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. C. Holzhey, F. Larsen, F. Wilczek, Nucl. Phys. B 424, 443 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  41. P. Calabrese, J. Cardy, J. Stat. Mech. 2004, P06002 (2004).

    Google Scholar 

  42. P. Calabrese, J. Cardy, J. Phys. A 42, 504005 (2009).

    Article  MathSciNet  Google Scholar 

  43. H. Matsueda, arXiv:1112.5566.

  44. G. Vidal, J.I. Latorre, E. Rico, A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).

    Article  ADS  Google Scholar 

  45. M.B. Plenio, J. Eisert, J. Dreibig, M. Cramer, Phys. Rev. Lett. 94, 060503 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Riera, J.I. Latorre, Phys. Rev. A 74, 052326 (2006).

    Article  ADS  Google Scholar 

  47. M. Andersson, M. Boman, S. Östlund, Phys. Rev. B 59, 10493 (1999).

    Article  ADS  Google Scholar 

  48. F. Ploomann, S. Mukerjee, A.M. Turner, J.E. Moore, Phys. Rev. Lett. 102, 255701 (2009).

    Article  ADS  Google Scholar 

  49. L. Tagliacozzo, T.R. de Oliveira, S. Iblisdir, J.I. Latorre, Phys. Rev. B 78, 024410 (2008).

    Article  ADS  Google Scholar 

  50. T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, C., Su, Y.H. & Wang, H. Quantum ground-state entanglement for spin-1/2 alternating Heisenberg model in one spatial dimension. Eur. Phys. J. Plus 130, 95 (2015). https://doi.org/10.1140/epjp/i2015-15095-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15095-3

Keywords

Navigation