Skip to main content
Log in

Stacking faults and structural characterization of mechanically alloyed Ni50Cu10(Fe2B)10P30 powders

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The nanocrystalline NiCu(Fe2B)P alloy was prepared by mechanically alloying of the elemental powders in a high-energy ball mill under argon atmosphere. The transformations occurring in the material during milling were studied by X-ray diffraction. Microstructure parameters, such as crystallite size, microstrains, stacking faults probability, and dislocations density were determined from the Rietveld refinement of the X-ray diffraction patterns. Scanning electron microscopy (SEM) was employed to examine the morphology of the samples as a function of milling times. On further milling (40h), a nanocrystalline matrix, where nanocrystalline Fcc-Ni(Cu, Fe, P), Fe2B and Bcc-Fe(B) phases were embedded, was obtained. The phase transformations are related to the increase of dislocation and accumulation of stacking faults. The nanostructure formation caused by mechanical alloying are commonly attributed to the generation and movement of dislocations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Suryanarayana, Prog. Mater Sci. 46, 1 (2001)

    Article  Google Scholar 

  2. K.H. Park, D. Mohapatra, B. Ramachandra Reddy et al., Hydrometallurgy 86, 164 (2007)

    Article  Google Scholar 

  3. V.K. Gouda, I.I. Selim, A.A. Khedr et al., Mater. Sci. Technol. 15, 208 (1999)

    Google Scholar 

  4. V.B. Singh, A. Gupta, J. Mater. Sci. 36, 1433 (2001)

    Article  ADS  Google Scholar 

  5. Y.V. Baldokhin, P.Y. Kolotyrkin, Y.I. Petrov, E.A. Shafranovsky, Phys. Lett. A 189, 137 (1994)

    Article  ADS  Google Scholar 

  6. R.H. Yu, L. Ren, S. Basu, K.M. Unruh, A. Parvizi-Majidi, J.Q. Xiao, J. Appl. Phys. 87, 5840 (1999)

    Article  ADS  Google Scholar 

  7. A. Djekoun, B. Bouzabata, S. Alleg, J.M. Greneche, A. Otmani, Ann. Chim. Sci. Mater. 23, 557 (1998)

    Article  Google Scholar 

  8. J.J. Sunol, A. Gonzalez, L. Escoda, J. Mater. Sci. 39, 5147 (2004)

    Article  ADS  Google Scholar 

  9. X.G. Li, A. Chiba, S. Takahashi, J. Magn. & Magn. Mater. 170, 339 (1997)

    Article  ADS  Google Scholar 

  10. C. Suryanarayana, Bull. Mater. Sci. 17, 307 (1994)

    Article  Google Scholar 

  11. C. Suryanarayana, C.C. Koch, Hyperfine Interact. 130, 5 (2000)

    Article  ADS  Google Scholar 

  12. K. Lu, Mater. Sci. Eng. Rep. R 16, 161 (1996)

    Article  Google Scholar 

  13. T. Ungar, A. Borbely, J. Appl. Phys. Lett. 69, 3173 (1996)

    Article  ADS  Google Scholar 

  14. M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Sunol, Mater. Lett. 64, 1802 (2010)

    Article  Google Scholar 

  15. J. Sort, J. Noguès, S. Suriñach, J.S. Muñoz, M.D. Barò, Mater. Sci. Eng. A 869, 375 (2004)

    Google Scholar 

  16. J.Y. Huang, Y.K. Wu, H.Q. Ye, K. Lu, NanoStruct. Mater. 6, 723 (1995)

    Article  Google Scholar 

  17. R.A. Young, The Rietveld Method, first edition (Oxford University Press, Oxford, 1996)

  18. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  19. L. Lutterotti, MAUD, CPD, Newsletter (IUCr), 24 (2000)

  20. C. Aguilar, J. Marin, S. Ordonez, D. Celentano, F. Castro, V. Martinez, Rev. Metallurg. 42, 334 (2006)

    Google Scholar 

  21. J. Eckert, J.C. Holzer, W.L. Johnson, J. Appl. Phys. 73, 131 (1993)

    Article  ADS  Google Scholar 

  22. F.A. Mohamed, Acta Mater. 51, 4107 (2003)

    Article  Google Scholar 

  23. M. Mhadhbi, M. Khitouni, M. Azabou, A. Kolsi, J. Mater. Charact. 59, 944 (2008)

    Article  Google Scholar 

  24. D.L. Zhang, Prog. Mater. Sci. 49, 537 (2004)

    Article  Google Scholar 

  25. A.I. Salimon, A.M. Korsunsky, A.N. Ivanov, J. Mater. Sci. Eng. A 271, 196 (1999)

    Article  Google Scholar 

  26. E. Gaffet, G. Le Caër, in Mechanical Processing for Nanomaterials, Encyclopedia of Nanoscience and Nanotechnology, edited by H.S. Nalwa, Vol. 5 (American Scientific Publishers, 2004) pp. 91--129

  27. M. Azabou, H. Ibn Gharsallah, L. Escoda, J.J. Suñol, A.W. Kolsi, M. Khitouni, Powder Technol. 224, 338 (2012)

    Article  Google Scholar 

  28. C.C. Koch, Nanostruct. Mater. 9, 13 (1997)

    Article  Google Scholar 

  29. H. Okumura, K.N. Ishihara, P.H. Shingu, H.S. Park, S. Nasu, J. Mater. Sci. 27, 153 (1992)

    Article  ADS  Google Scholar 

  30. Y. Yoshizawa, K. Yamauchi, Mater. Sci. Eng. A 133, 176 (1991)

    Article  Google Scholar 

  31. L. Dekhil, S. Alleg, J.J. Sunol, J.M. Grenèche, Adv. Powder Technol. 20, 593 (2009)

    Article  Google Scholar 

  32. S. Louidi, F.Z. Bentayeb, J.J. Suñol, L. Escoda, J. Alloys. Compd. 493, 110 (2010)

    Article  Google Scholar 

  33. S. Louidi, F.Z. Bentayeb, W. Tebib, J.J. Suñol, L. Escoda, A.M. Mercier, Mater. Chem. Phys. 132, 761 (2012)

    Article  Google Scholar 

  34. Y.H. Zhao, H.W. Sheng, K. Lu, Acta Mater. 49, 365 (2001)

    Article  Google Scholar 

  35. M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Suñol, J. Mater. Lett. 64, 1802 (2010)

    Article  Google Scholar 

  36. J.W. Christian, The Theory of Transformations in Metals and Alloys, third edition (Pergamon, Oxford, 2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Slimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slimi, M., Azabou, M., Escoda, L. et al. Stacking faults and structural characterization of mechanically alloyed Ni50Cu10(Fe2B)10P30 powders. Eur. Phys. J. Plus 130, 72 (2015). https://doi.org/10.1140/epjp/i2015-15072-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15072-x

Keywords

Navigation