Skip to main content
Log in

On the integration of protein-protein interaction networks with gene expression and 3D structural data: What can be gained?

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The biological role of proteins has been analyzed from different perspectives, initially by considering proteins as isolated biological entities, then as cooperating entities that perform their function by interacting with other molecules. There are other dimensions that are important for the complete understanding of the biological processes: time and location. However a protein is rarely annotated with temporal and spatial information. Experimental Protein-Proteins Interaction (PPI) data are static; furthermore they generally do not include transient interactions which are a considerable fraction of the interactome of many organisms. One way to incorporate temporal and condition information is to use other sources of information, such as gene expression data and 3D structural data. Here we review work done to understand the insight that can be gained by enriching PPI data with gene expression and 3D structural data. In particular, we address the following questions: Can the dynamics of a single protein or of an interaction be accurately derived from these data? Can the assembly-disassembly of protein complexes be traced over time? What type of topological changes occur in a PPI network architecture over time?

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Ito et al., Proc. Natl. Acad. Sci. U.S.A. 98, 4569 (2001).

    Article  ADS  Google Scholar 

  2. J. De Las Rivas, C. Fontanillo, PLoS Comput. Biol. 6, e1000807 (2010).

    Article  Google Scholar 

  3. K.R. Brown, J. Jurisica, Genome Biol. 8, R95 (2007).

    Article  Google Scholar 

  4. R. Jansen, D. Greenbaum, M. Gerstein, Genome Res. 12, 37 (2002).

    Article  Google Scholar 

  5. J. Wang, X. Peng, M. Li, Y. Pan, Proteomics 13, 301 (2013) DOI:10.1002/pmic.201200277.

    Article  Google Scholar 

  6. N. Bhardwaj, A. Abyzov, D. Clarke, C. Shou, M.B. Gerstein, Protein Sci. 20, 1745 (2011).

    Article  Google Scholar 

  7. C. Sanchez Claros, A. Tramontano, PLoS ONE 7, e38765 (2012).

    Article  ADS  Google Scholar 

  8. N. Tuncbag, G. Kar, A. Gursoy, O. Keskin, R. Nussinov, Mol. Biosyst. 5, 1770 (2009).

    Article  Google Scholar 

  9. J.-D.J. Han, N. Bertin, T. Hao, D.S. Goldberg, G.F. Berriz, L.V. Zhang, D. Dupuy, A.J.M. Walhout, M.E. Cusick, F.P. Roth, M. Vidal, Nature 430, 88 (2004).

    Article  ADS  Google Scholar 

  10. E.D. Levy, J.B. Pereira-Leal, Curr. Opin. Struct. Biol. 18, 1 (2008).

    Article  Google Scholar 

  11. T.M. Przytycka, M. Singh, D.K. Slonim, Brief. Bioinform. 11, 15 (2010) DOI:10.1093/bib/bbp057.

    Article  Google Scholar 

  12. U. Stelzl, E. Wanker, Curr. Opin. Chem. Biol. 10, 551 (2006).

    Article  Google Scholar 

  13. M. Vidal, M.L. Cusick, A.L. Barabasi, Cell 144, 986 (2011).

    Article  Google Scholar 

  14. U. De Lichtenberg, L.J. Jensen, S. Brunak, P. Bork, Science 30, 724 (2005).

    Article  Google Scholar 

  15. K. Komurov, R. White, Mol. Syst. Biol. 3, 110 (2007).

    Article  Google Scholar 

  16. T. Wallach, K. Schellenberg, B. Maier, R.K.R. Kalathur, P. Porras et al., PLoS Genet. 9, e1003398 (2013) DOI:10.1371/journal.pgen.1003398.

    Article  Google Scholar 

  17. L. Bertin, PLoS Comput. Biology 5, 6 (2007).

    Article  Google Scholar 

  18. S. Agarwal, C.M. Deane, M.A. Porter, N.S. Jones, PLoS Comput. Biol. 6, 6 (2010).

    Article  MathSciNet  Google Scholar 

  19. N.N. Batada, L.D. Hurst, M. Tyers, PLoS Comput. Biol. 2, e88 (2006).

    Article  ADS  Google Scholar 

  20. R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Nat. Phys. 3, 63 (2006).

    Article  Google Scholar 

  21. P.M. Kim et al., Science 314, 1938 (2006).

    Article  ADS  Google Scholar 

  22. M.R. Wilkins, S.K. Kummerfeld, Trends Biochem. Sci. 33, 195 (2008).

    Article  Google Scholar 

  23. I.W. Taylor, R. Linding, D. Warde-Farley, Y. Liu, C. Pesquita et al., Nature Biotechnol. 27, 199 (2009).

    Article  Google Scholar 

  24. P. Bertolazzi, M.E. Bock, C. Guerra, Biotechnol. Adv. 31, 274 (2013).

    Article  Google Scholar 

  25. D. Clarke, N. Bhardwaj, M.B. Gerstein, J. Struct. Biol. 179, 320 (2012).

    Article  Google Scholar 

  26. R. Mosca, A. Céol, P. Aloy, Nature Methods 10, 47 (2013) DOI:10.1038/nmeth.2289.

    Article  Google Scholar 

  27. P. Aloy, R.B. Russell, Trends Biochem. Sci. 27, 633 (2002).

    Article  Google Scholar 

  28. P. Aloy, R.B. Russell, Proc. Natl. Acad. Sci. U.S.A. 99, 5896 (2002).

    Article  ADS  Google Scholar 

  29. P. Aloy, R.B. Russell, Nature Rev. Mol. Cell Biol. 7, 188 (2006) DOI:10.1038/nrm1859.

    Article  Google Scholar 

  30. P.M. Kim, A. Sboner, Y. Xia, M. Gerstein, Mol. Syst. Biol. 4, 179 (2008).

    Article  Google Scholar 

  31. K. Yura, S. Hayward, Bioinformatics 25, 3108 (2009).

    Article  Google Scholar 

  32. A.K. Dunker, C.J. Oldfield, J. Meng, P. Romero, J.Y. Yang, J.W. Chen, V. Vacic, Z. Obradovic, V.N. Uversky, BMC Genomics 16, 9 (2008).

    Google Scholar 

  33. P. Tompa, Nat. Chem. Biol. 8, 597 (2012).

    Article  Google Scholar 

  34. V. Spirin, L.A. Mirny, Proc. Natl. Acad. Sci. U.S.A. 100, 12123 (2003).

    Article  ADS  Google Scholar 

  35. S. Srihari, H.W. Leong, BMC Bioinform. 13, S16 (2012).

    Google Scholar 

  36. M. Eisen, P. Spellman, P. Brown, D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 95, 14863 (1998).

    Article  ADS  Google Scholar 

  37. S. Tornow, H.W. Mewes, Nucl. Acids Res. 31, 6283 (2003).

    Article  Google Scholar 

  38. C.T. Liu, S. Yuan, K.C. Li, Nucl. Acids Res. 37, 526 (2009) DOI:10.1093/nar/gkn972.

    Article  Google Scholar 

  39. S. Kikugawa, K. Nishikata, K. Murakami, Y. Sato, M. Suzuki, M.D. Altaf-Ul-Amin, S. Kanaya, T. Imanishi, BMC Syst. Biol. 6, S7 (2012) DOI:10.1186/1752-0509-6-S2-S7.

    Article  Google Scholar 

  40. L.V. Zhang, O.D. King, S.L. Wong, D.S. Goldberg, A.H. Tong et al., J. Biol. 4, 6 (2005).

    Article  Google Scholar 

  41. D.I. Santon et al., A. Swiercz, A. Zmieńko, M. Kasprzak, M. Blazewicz, P. Bertolazzi, G. Felici, OMICS 18, 2 (2014) DOI:10.1089/omi.2013.0050.

    Google Scholar 

  42. M. Li, X. Wu, J. Wang, Y. Pan, BMC Bioinform. 13, 109 (2012) DOI:10.1186/1471-2105-13-109.

    Article  Google Scholar 

  43. X. Tang, J. Wang, B. Liu et al., BMC Bioinform. 12, 339 (2011).

    Article  Google Scholar 

  44. B.P. Tu, A. Kudlicki, M. Rowicka, S.L. McKnight, Science 310, 1152 (2005).

    Article  ADS  Google Scholar 

  45. I. Xenarios, L. Salwnski, X.J. Duan, P. Higney, S.M. Kim, D. Eisenberg, Nucl. Acids Res. 30, 303 (2002).

    Article  Google Scholar 

  46. http://www.ncbi.nlm.nih.gov/geo/.

  47. J. Vlasblom, S.J. Wodak, BMC Bioinform. 10, 99 (2009).

    Article  Google Scholar 

  48. G. Palla, I. Dernyi, I. Farkas, T. Vicsek, Nature 435, 814 (2005).

    Article  ADS  Google Scholar 

  49. A. Beyer, S. Bandyopadhyay, T. Ideker, Nature Rev. Genet. 8, 699 (2007).

    Article  Google Scholar 

  50. S.R. Collins, K.M. Miller, N.L. Maas, A. Roguev, J. Fillingham et al., Nature 446, 806 (2007).

    Article  ADS  Google Scholar 

  51. I.A. Maraziotis, K. Dimitrakopoulou, A. Bezerianos, BMC Bioinform. 8, 408 (2007).

    Article  Google Scholar 

  52. N.M. Luscombe, M.M. Babu, Y.H. Haiyuan, M. Snyder, S. Teichmann, M. Gerstein, Nature 431, 308 (2004) DOI:10.1038/nature02782.

    Article  ADS  Google Scholar 

  53. S.R. Hegde, P. Manimaran, S.C. Mande, PLoS Comput. Biol. 4, e1000237 (2008) DOI:10.1371/journal.pcbi.1000237.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concettina Guerra.

Additional information

Contribution to the Focus Point “Pattern Recognition Tools for Proteomics” edited by V. Cantoni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertolazzi, P., Bock, M.E., Guerra, C. et al. On the integration of protein-protein interaction networks with gene expression and 3D structural data: What can be gained?. Eur. Phys. J. Plus 129, 134 (2014). https://doi.org/10.1140/epjp/i2014-14134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2014-14134-y

Keywords

Navigation