Skip to main content
Log in

Solitons in the Heimburg–Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

A Correction to this article was published on 11 October 2022

This article has been updated

Abstract

Experiments show that elastic constants of lipid bilayers vary greatly during the liquid-to-gel phase transition. This fact forms the cornerstone of the Heimburg–Jackson model of soliton propagation along membranes of axons, in which the action potential is accompanied by a traveling phase transition. However, the dispersion term, which is crucial for the existence of solitons, is added to the Heimburg–Jackson model ad hoc and set to fit experimental observations. In the present paper, we aim to consolidate this view with continuous membrane mechanics. Using literature data, we show that the compression modulus of a DPPC membrane is smaller by approximately an order of magnitude during phase transition. With a series expansion of the compression modulus, we write the action of a membrane and solve the corresponding wave equation analytically using an Exp-function method. We confirm that membrane solitons with speeds around 200 m/s are possible with amplitudes inversely proportional to their speed. We conclude that dispersion necessary for existence of solitons is directly related to a membrane’s bending properties, offering a possible explanation for h. Our findings are in general agreement with existing literature and give insight into a general mechanism of wave propagation in membranes close to transition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

References

  1. T. Heimburg, A.D. Jackson, On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. 102(28), 9790–9795 (2005)

    Article  ADS  Google Scholar 

  2. Thomas Heimburg, Thermal Biophysics of Membranes (John Wiley & Sons, US, 2008)

    Google Scholar 

  3. On the role of the phospholipid membrane in free energy coupling. https://www.nbi.ku.dk/membranes/Kaufmann/publications.html. Accessed: 13-08-2022

  4. Gerald H. Pollack, Cells, gels and the engines of life: a new, unifying approach to cell function (Ebner & Sons Seattle, WA, 2001)

    Google Scholar 

  5. J.M. Ritchie, R.D. Keynes, The production and absorption of heat associated with electrical activity in nerve and electric organ. Q. Rev. Biophys. 18(4), 451–476 (1985)

    Article  Google Scholar 

  6. I. Tasaki, P.M. Byrne, Heat production associated with a propagated impulse in bullfrog myelinated nerve fibers. Jpn. J. Physiol. 42(5), 805–813 (1992)

    Article  Google Scholar 

  7. B. Lautrup, R. Appali, A.D. Jackson, T. Heimburg, The stability of solitons in biomembranes and nerves. Eur. Phys. J. E 34(6), 1–9 (2011)

    Article  Google Scholar 

  8. L.D. Mosgaard, A.D. Jackson, T. Heimburg, Low-frequency sound propagation in lipid membranes. Adv. Planar Lipid Bilayers and Liposom. 16, 51–74 (2012)

    Article  Google Scholar 

  9. X. Gràcia and T. Sanz-Perela. The wave equation for stiff strings and piano tuning. Reports@SCM 3, 1–16 (2017). https://doi.org/10.2436/20.2002.02.11

  10. L. Picas, F. Rico, Simon Scheuring, Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys. J. 102(1), L01–L03 (2012)

    Article  Google Scholar 

  11. A. Dopico. (2007) Methods in membrane lipids, volume 400. Springer Science & Business Media,

  12. J.-H. He, W. Xu-Hong, Exp-function method for nonlinear wave equations. Chaos, Solitons & Fractals 30(3), 700–708 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.-M. Wazwaz. Partial differential equations and solitary waves theory. Springer Science & Business Media, (2010)

  14. Y. Zhang, K. Abiraman, H. Li, D.M. Pierce, A.V. Tzingounis, G. Lykotrafitis, Modeling of the axon membrane skeleton structure and implications for its mechanical properties. PLoS Comput. Biol. 13(2), e1005407 (2017)

    Article  ADS  Google Scholar 

  15. C. E. Morris. Why are so many ion channels mechanosensitive? In: Cell physiology source book, pp. 493–505. Elsevier, (2012)

  16. A. Gonzalez-Perez, L.D. Mosgaard, R. Budvytyte, E. Villagran-Vargas, A.D. Jackson, T. Heimburg, Solitary electromechanical pulses in lobster neurons. Biophys. Chem. 216, 51–59 (2016)

    Article  Google Scholar 

  17. H.. Barz, A.. Schreiber, U.. Barz, Nerve impulse propagation: mechanical wave model and hh model. Med. Hypotheses 137, 109540 (2020)

    Article  Google Scholar 

  18. J. Griesbauer, A. Wixforth, M.F. Schneider, Wave propagation in lipid monolayers. Biophys. J. 97(10), 2710–2716 (2009)

    Article  ADS  Google Scholar 

  19. S. Josef Griesbauer, Achim Wixforth Bössinger, M.F. Schneider, Propagation of 2d pressure pulses in lipid monolayers and its possible implications for biology. Phys. Rev. Lett. 108(19), 198103 (2012)

  20. M.I. Perez-Camacho, J.C. Ruiz-Suárez, Propagation of a thermo-mechanical perturbation on a lipid membrane. Soft Matter 13(37), 6555–6561 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of a Slovenian Research Agency (ARRS) grants P2-0232 and J3-3066.

Author information

Authors and Affiliations

Authors

Contributions

MD: Conceptualization, Investigation, Methodology, Visualization, Writing—original draft, Writing—review & editing. Matej Daniel: Supervision, editing, reviewing, funding. Veronika Kralj-Iglič: Conceptualization, supervision, editing, reviewing, funding. Aleš Iglič: Conceptualization, supervision, editing, reviewing, funding.

Corresponding author

Correspondence to Mitja Drab.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

The original online version of this article was revised to correct reference 9 to X. Gràcia and T. Sanz-Perela. The wave equation for stiff strings and piano tuning. Reports@SCM 3, 1-16 (2017). https://doi.org/10.2436/20.2002.02.11

Appendix A - Peakons

Appendix A - Peakons

The solitary wave solutions are assumed to be of the form u(z), \(z=x-vt\) where v is the speed of propagation. Since we are looking for localized wave packets, our solutions have to obey u(z), \(u'(z)\), \(u''(z) \rightarrow 0\) as \(z \rightarrow \pm \infty \). The primes denote derivatives with respect to z. After substitution and chain rule, Eq. (2) becomes

$$\begin{aligned} v^2\left( \frac{\partial ^2 u}{\partial z^2}\right) =c^2\left( \frac{\partial ^2 u}{\partial z^2}\right) -h\left( \frac{\partial ^4 u}{\partial z^4}\right) . \end{aligned}$$
(22)

Here, \(c^2=k_{a}/\mu \) and \(h=k_{b}/\mu \). Rearranging, we get

$$\begin{aligned} 0=\frac{\partial ^2}{\partial z^2}\left[ u(c^2-v^2) -h \frac{\partial ^2 u}{\partial z^2}\right] . \end{aligned}$$
(23)

Following the assumption that solitons are localized and vanish for \(z \rightarrow \pm \infty \), we can perform double integration immediately. After multiplying both sides by \(2(\partial u/\partial z)\) and considering the identity \(2(\partial u/\partial z)(\partial ^2 u/\partial z^2)=\partial /\partial z(\partial u/\partial z)^2\), we get

$$\begin{aligned} \left( \frac{\partial u}{\partial z}\right) ^2=\frac{(c^2-v^2)}{h}u^2. \end{aligned}$$
(24)

We see that solitons are possible only for the cases where \(|v|<c\), otherwise the solutions do not decay to zero at infinity. The solution is

$$\begin{aligned} u(x,t)=c_{1}e^{-|x-vt|\sqrt{(c^2-v^2)/h}}, \end{aligned}$$
(25)

where \(c_{1}\) is given by the initial conditions. The solution is smooth apart from the peak at its crest leading to a finite jump in the first derivative of the solution. Such solutions are sometimes called peaked solitary wave solutions or peakons in short [13].

1.1 Appendix B - Coefficient list

Coefficients from Eq. (14) are

$$\begin{aligned}&c_1 = a_{-1}^2 a_0 b_{-1}^2 \gamma ^2-a_{-1}^3 b_0 b_{-1} \gamma ^2-2 a_{-1} a_0 b_{-1}^3 \gamma \\&\qquad +2 a_{-1}^2 b_0 b_{-1}^2 \gamma -a_0 b_{-1}^4+a_{-1} b_0 b_{-1}^3, \\&c_2 = 3 a_{-1} a_0^2 b_{-1}^2 \gamma ^2+4 a_{-1}^2 a_1 b_{-1}^2 \gamma ^2\\&\qquad -5 a_{-1}^2 a_0 b_0 b_{-1} \gamma ^2-4 a_{-1}^3 b_1 b_{-1} \gamma ^2\\&\qquad +2 a_{-1}^3 b_0^2 \gamma ^2-3 a_0^2 b_{-1}^3 \gamma -8 a_{-1} a_1 b_{-1}^3 \gamma \\&\qquad +4 a_{-1} a_0 b_0 b_{-1}^2 \gamma \\&\qquad +8 a_{-1}^2 b_1 b_{-1}^2 \gamma -a_{-1}^2 b_0^2 b_{-1} \gamma -16 a_1 b_{-1}^4\\&\qquad +11 a_0 b_0 b_{-1}^3+16 a_{-1} b_1 b_{-1}^3-11 a_{-1} b_0^2 b_{-1}^2, \\&c_3 = 7 a_{-1}^3 b_0 b_1 \gamma ^2+3 a_0 a_{-1}^2 b_0^2 \gamma ^2\\&\qquad -3 a_1 a_{-1}^2 b_{-1} b_0 \gamma ^2\\&\qquad -18 a_0 a_{-1}^2 b_{-1} b_1 \gamma ^2+14 a_0 a_1 a_{-1} b_{-1}^2 \gamma ^2\\&\qquad -5 a_0^2 a_{-1} b_{-1}b_0 \gamma ^2\\&\qquad +2 a_0^3 b_{-1}^2 \gamma ^2-3 a_{-1}^2 b_0^3 \gamma +4 a_0 a_{-1} b_{-1} b_0^2 \gamma \\&\qquad -8 a_1 a_{-1} b_{-1}^2 b_0 \gamma +22 a_0 a_{-1} b_{-1}^2 b_1 \gamma \\&\qquad -14 a_0 a_1 b_{-1}^3 \gamma -a_0^2 b_{-1}^2 b_0 \gamma \\&\qquad +11 a_{-1} b_{-1} b_0^3-77 a_{-1} b_{-1}^2 b_0 b-11 a_0 b_{-1}^2 b_0^2\\&\qquad +a_1 b_{-1}^3 b_0+76 a_0 b_{-1}^3 b_1, \\&c_4 = a_{-1} a_0^2 b_0^2 \gamma ^2+2 a_{-1}^2 a_1 b_0^2 \gamma ^2\\&\qquad -a_0^3 b_{-1} b_0 \gamma ^2-2 a_{-1} a_0 a_1 b_{-1} b_0 \gamma ^2+11 a_{-1}^2 a_0 b_1 b_0 \gamma ^2\\&\qquad +12 a_{-1} a_1^2 b_{-1}^2 \gamma ^2+11 a_0^2 a_1 b_{-1}^2 \gamma ^2\\&\qquad +8 a_{-1}^3 b_1^2 \gamma ^2-22 a_{-1} a_0^2 b_{-1} b_1 \gamma ^2-20 a_{-1}^2 a_1 b_{-1} b_1 \gamma ^2\\&\qquad -2 a_{-1} a_0 b_0^3 \gamma \\&\qquad +2 a_0^2 b_{-1} b_0^2 \gamma -2 a_{-1} a_1 b_{-1} b_0^2 \gamma \\&\qquad -13 a_{-1}^2 b_1 b_0^2 \gamma -20 a_0 a_1 b_{-1}^2 b_0 \gamma \\&\qquad +24 a_{-1} a_0 b_{-1} b_1 b_0 \gamma -12 a_1^2 b_{-1}^3 \gamma -4 a_{-1}^2 b_{-1} b_1^2 \gamma \\&\qquad +11 a_0^2 b_{-1}^2 b_1 \gamma +16 a_{-1} a_1 b_{-1}^2 b_1 \gamma \\&\qquad -a_{-1} b_0^4+a_0 b_{-1} b_0^3-11 a_1 b_{-1}^2 b_0^2 +58 a_{-1} b_{-1} b_1 b_0^2\\&\qquad -47 a_0 b_{-1}^2 b_1 b_0-176 a_{-1} b_{-1}^2 b_1^2+176 a_1 b_{-1}^3 b_1, \\&c_5 = -8 a_0^3 b_{-1} b_1 \gamma ^2+3 a_1 a_0^2 b_{-1} b_0 \gamma ^2+3 a_{-1} a_0^2 b_0 b_1 \gamma ^2\\&\qquad +17 a_1^2 a_0 b_{-1}^2 \gamma ^2+2 a_{-1} a_1 a_0 b_0^2 \gamma ^2\\&\qquad +17 a_{-1}^2 a_0 b_1^2 \gamma ^2-44 a_{-1} a_1 a_0 b_{-1} b_1 \gamma ^2+5 a_{-1} a_1^2 b_{-1} b_0 \gamma ^2\\&\qquad +5 a_{-1}^2 a_1 b_0 b_1 \gamma ^2\\&\qquad +18 a_0^2 b_{-1} b_0 b_1 \gamma -8 a_1 a_0 b_{-1} b_0^2 \gamma \\&\qquad +10 a_{-1} a_0 b_{-1} b_1^2 \gamma +10 a_1 a_0 b_{-1}^2 b_1 \gamma \\&\qquad -8 a_{-1} a_0 b_0^2 b_1 \gamma -2 a_{-1} a_1 b_0^3 \gamma -22 a_{-1}^2 b_0 b_1^2 \gamma \\&\qquad -22 a_1^2 b_{-1}^2 b_0 \gamma +24 a_{-1} a_1 b_{-1} b_0 b_1 \gamma -230 a_0 b_{-1}^2 b_1^2\\&\qquad +10 a_0 b_{-1} b_0^2 b_1-5 a_1 b_{-1} b_0^3\\&\qquad +115 a_{-1} b_{-1} b_0 b_1^2-5 a_{-1} b_0^3 b_1+115 a_1 b_{-1}^2 b_0 b_1, \\&c_6 = 2 a_{-1} a_1^2 b_0^2 \gamma ^2+a_0^2 a_1 b_0^2 \gamma ^2+11 a_0 a_1^2 b_{-1} b_0 \gamma ^2\\&\qquad -a_0^3 b_1 b_0 \gamma ^2-2 a_{-1} a_0 a_1 b_1 b_0 \gamma ^2\\&\qquad +8 a_1^3 b_{-1}^2 \gamma ^2+11 a_{-1} a_0^2 b_1^2 \gamma ^2+12 a_{-1}^2 a_1 b_1^2 \gamma ^2\\&\qquad -20 a_{-1} a_1^2 b_{-1} b_1 \gamma ^2\\&\qquad -22 a_0^2 a_1 b_{-1} b_1 \gamma ^2-2 a_0 a_1 b_0^3 \gamma -13 a_1^2 b_{-1} b_0^2 \gamma \\&\qquad +2 a_0^2 b_1 b_0^2 \gamma -2 a_{-1} a_1 b_1 b_0^2 \gamma -20 a_{-1} a_0 b_1^2 b_0 \gamma \\&\qquad +24 a_0 a_1 b_{-1} b_1 b_0 \gamma -12 a_{-1}^2 b_1^3 \gamma +11 a_0^2 b_{-1} b_1^2 \gamma \\&\qquad +16 a_{-1} a_1 b_{-1} b_1^2 \gamma -4 a_1^2 b_{-1}^2 b_1 \gamma -a_1 b_0^4+a_0 b_1 b_0^3\\&\qquad -11 a_{-1} b_1^2 b_0^2+58 a_1 b_{-1} b_1 b_0^2-47 a_0 b_{-1} b_1^2 b_0\\&\qquad +176 a_{-1} b_{-1} b_1^3-176 a_1 b_{-1}^2 b_1^2, \\&c_7 = 2 a_0^3 b_1^2 \gamma ^2-5 a_1 a_0^2 b_0 b_1 \gamma ^2+3 a_1^2 a_0 b_0^2 \gamma ^2\\&\qquad +14 a_{-1} a_1 a_0 b_1^2 \gamma ^2-18 a_1^2 a_0 b_{-1} b_1 \gamma ^2\\&\qquad +7 a_1^3 b_{-1} b_0 \gamma ^2-3 a_{-1} a_1^2 b_0 b_1 \gamma ^2-a_0^2 b_0 b_1^2 \gamma \\&\qquad -14 a_{-1} a_0 b_1^3 \gamma +22 a_1 a_0 b_{-1} b_1^2 \gamma \\&\qquad +4 a_1 a_0 b_0^2 b_1 \gamma -3 a_1^2 b_0^3 \gamma -8 a_{-1} a_1 b_0 b_1^2 \gamma \\&\qquad +76 a_0 b_{-1} b_1^3-11 a_0 b_0^2 b_1^2\\&\qquad +a_{-1} b_0 b_1^3-77 a_1 b_{-1} b_0 b_1^2+11 a_1 b_0^3 b_1, \\&c_8 = 4 a_{-1} a_1^2 b_1^2 \gamma ^2+3 a_0^2 a_1 b_1^2 \gamma ^2-4 a_1^3 b_{-1} b_1 \gamma ^2\\&\qquad -5 a_0 a_1^2 b_0 b_1 \gamma ^2+2 a_1^3 b_0^2 \gamma ^2-3 a_0^2 b_1^3 \gamma \\&\qquad -8 a_{-1} a_1 b_1^3 \gamma +8 a_1^2 b_{-1} b_1^2 \gamma +4 a_0 a_1 b_0 b_1^2 \gamma \\&\qquad -a_1^2 b_0^2 b_1 \gamma -16 a_{-1} b_1^4\\&\qquad +16 a_1 b_{-1} b_1^3+11 a_0 b_0 b_1^3-11 a_1 b_0^2 b_1^2, \\&c_9 = a_0 a_1^2 b_1^2 \gamma ^2-a_1^3 b_0 b_1 \gamma ^2-2 a_0 a_1 b_1^3 \gamma \\&\quad +2 a_1^2 b_0 b_1^2 \gamma -a_0 b_1^4+a_1 b_0 b_1^3. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drab, M., Daniel, M., Kralj-Iglič, V. et al. Solitons in the Heimburg–Jackson model of sound propagation in lipid bilayers are enabled by dispersion of a stiff membrane. Eur. Phys. J. E 45, 79 (2022). https://doi.org/10.1140/epje/s10189-022-00233-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00233-y

Navigation