Skip to main content
Log in

Stretching Hookean ribbons part II: from buckling instability to far-from-threshold wrinkle pattern

  • Regular Article - Soft Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We address the fully developed wrinkle pattern formed upon stretching a Hookean, rectangular-shaped sheet, when the longitudinal tensile load induces transverse compression that far exceeds the stability threshold of a purely planar deformation. At this “far-from-threshold” parameter regime, which has been the subject of the celebrated Cerda–Mahadevan model (Cerda and Mahadevan in Phys Rev Lett 90:074302, 2003), the wrinkle pattern expands throughout the length of the sheet and the characteristic wavelength of undulations is much smaller than its width. Employing Surface Evolver simulations over a range of sheet thicknesses and tensile loads, we elucidate the theoretical underpinnings of the far-from-threshold framework in this setup. We show that the evolution of wrinkles comes in tandem with collapse of transverse compressive stress, rather than vanishing transverse strain (which was hypothesized by Cerda and Mahadevan in Phys Rev Lett 90:074302, 2003), such that the stress field approaches asymptotically a compression-free limit, describable by tension field theory. We compute the compression-free stress field by simulating a Hookean sheet that has finite stretching modulus but no bending rigidity, and show that this singular limit encapsulates the geometrical nonlinearity underlying the amplitude–wavelength ratio of wrinkle patterns in physical, highly bendable sheets, even though the actual strains may be so small that the local mechanics is perfectly Hookean. Finally, we revisit the balance of bending and stretching energies that gives rise to a favorable wrinkle wavelength, and study the consequent dependence of the wavelength on the tensile load as well as the thickness and length of the sheet.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Cerda, L. Mahadevan, Phys. Rev. Lett. 90, 074302 (2003)

    Article  ADS  Google Scholar 

  2. R.V. Kohn, Proceedings of the International Congress of Mathematicians (Madrid, Spain, 2006), pp. 359–383

  3. N. Friedl, F. Rammerstorfer, F. Fischer, Comput. Struct. 78, 185 (2000)

    Article  Google Scholar 

  4. V. Nayyar, K. Ravi-Chandar, R. Huang, Int. J. Solids Struct. 48, 3471 (2011)

    Article  Google Scholar 

  5. M. Xin, B. Davidovitch, to Euro Phys. J. E (2020). https://doi.org/10.1140/epje/s10189-021-00092-z

  6. S.P. Timoshenko, J.N. Goodier, Theory of Elasticity (McGraw Hill, 1970)

  7. T.J. Healey, Q. Li, R.B. Cheng, J. Nonlinear Sci. 23, 777 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  8. Q. Li, T.J. Healey, J. Mech. Phys. Solids 97, 260 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Fu, T. Wang, F. Xu, Y. Huo, M. Potier-Ferry, J. Mech. Phys. Solids 124, 446 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  10. A.A. Sipos, E. Feher, Int. J. Solids. Struct. 97–98, 275 (2016)

    Article  Google Scholar 

  11. V. Nayyar, K. Ravi-Chandar, R. Huang, Int. J. Solids. Struct. 51, 1847 (2014)

    Article  Google Scholar 

  12. T. Wang, C. Fu, F. Xu, Y. Huo, M. Potier-Ferry, Int. J. Eng. Sci. 136, 1 (2019)

    Article  Google Scholar 

  13. A. Panaitescu, X. Meng, B. Davidovitch, J. Chopin, A. Kudroli, Phys. Rev. E 100, 053003 (2019)

    Article  ADS  Google Scholar 

  14. T.Y. Kim, E. Puntel, E. Fried, Int. J. Solids. Struct. 49, 771 (2012)

    Article  Google Scholar 

  15. K.B. Toga, J. Huang, K. Cunningham, T.P. Russell, N. Menon, Soft Matter 9, 8289 (2013)

    Article  ADS  Google Scholar 

  16. M. Piñeirua, N. Tanaka, B. Roman, J. Bico, Soft Matter 9, 10985 (2013)

    Article  ADS  Google Scholar 

  17. M. Taylor, B. Davidovitch, Z. Qiu, K. Bertoldi, J. Mech. Phys. Solids 79, 92 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Taffetani, D. Vella, Philos. Trans. R. Soc. Lond. 375 (2017)

  19. J.D. Paulsen, E. Hohlfeld, H. King, J.S. Huang, Z. Qiu, T.P.R. Russell, N. Menon, D. Vella, B. Davidovitch, Proc. Nat. Acad. Sci. USA 113, 1144 (2016)

    Article  ADS  Google Scholar 

  20. J. Chopin, A. Panaitescu, A. Kudrolli, Phys. Rev. E 98, 043003 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  21. H.P. Dinh, V. Demery, B. Davidovitch, F. Brau, P. Damman, Phys. Rev. Lett. 117 (2016)

  22. F. Box, D. O’Kiely, O. Kodio, M. Inizan, A.A. Castrejon-Pita, D. Vella, Proc. Nat. Acad. Sci. USA 116, 20875 (2019)

    Article  ADS  Google Scholar 

  23. D. Vella, Nat. Rev. Phys. 1, 425 (2019)

    Article  Google Scholar 

  24. J.D. Paulsen, Ann. Rev. Condens. Matter Phys. 10, 431 (2019)

    Article  ADS  Google Scholar 

  25. P. Bella, R.V. Kohn, Commun. Pure Appl. Math. 67, 693 (2014)

    Article  Google Scholar 

  26. Y. Timounay, R. De, J.L. Stelzel, Z.S. Schrecengost, M.M. Ripp, J.D. Paulsen, Phys. Rev. X 10 (2020)

  27. M.M. Ripp, V. Demery, T. Zhang, J.D. Paulsen, Soft Matter 16, 4121 (2020)

    Article  ADS  Google Scholar 

  28. D. Vella, J. Huang, N. Menon, T.P. Russell, B. Davidovitch, Phys. Rev. Lett. 114, 014301 (2015)

    Article  ADS  Google Scholar 

  29. A. Azadi, G.M. Grason, Phys. Rev. Lett. 94, 013003 (2014)

    Google Scholar 

  30. J. Hure, B. Roman, J. Bico, Phys. Rev. Lett. 109, 054302 (2012)

    Article  ADS  Google Scholar 

  31. D. O’Kiely, F. Box, O. Kodio, J. Whiteley, D. Vella, Phys. Rev. Fluids 5(2020)

  32. J. Chopin, V. Démery, B. Davidovitch, J. Elast. 119, 137 (2015)

  33. B. Davidovitch, D. Vella, Soft Matter 14, 4913 (2018)

    Article  ADS  Google Scholar 

  34. D. Vella, B. Davidovitch, Phys. Rev. E 98, 013003 (2018)

    Article  ADS  Google Scholar 

  35. B. Davidovitch, Y. Sun, G. Grason, Proc. Nat. Aca. Sci. USA 116, 1483–1488 (2019)

    Article  Google Scholar 

  36. O. Tovkach, J. Chen, M.M. Ripp, T. Zhang, J.D. Paulsen, B. Davidovitch, Proc. Nat. Acad. Sci. USA 117, 3938 (2020)

    Article  ADS  Google Scholar 

  37. L. Mahadevan, J. Bico, G. McKinley, Europhys. Lett. 65, 323 (2004)

    Article  ADS  Google Scholar 

  38. B. Davidovitch, R.D. Schroll, D. Vella, M. Adda-Bedia, E. Cerda, Proc. Natl. Acad. Sci. USA 108, 18227 (2011)

    Article  ADS  Google Scholar 

  39. H. Wagner, Z. Flugtechn Motorluftschiffahrt 20, 8 (1929)

    Google Scholar 

  40. Stein, M., Hedgepeth JM, Technical report, NASA (1961)

  41. E.H. Mansfield, The Bending and Stretching of Plates (Cambridge University Press, 1989)

  42. A.C. Pipkin, IMA J. Appl. Math. 36, 85 (1986)

    Article  MathSciNet  Google Scholar 

  43. D.J. Steigmann, Proc. R. Soc. Lond. A 429, 141 (1990)

    Article  ADS  Google Scholar 

  44. H. King, R.D. Schroll, B. Davidovitch, N. Menon, Proc. Natl. Acad. Sci. USA 109, 9716 (2012)

    Article  ADS  Google Scholar 

  45. S.T. Milner, J.F. Joanny, P. Pincus, Europhys. Lett. 9, 495 (1989)

    Article  ADS  Google Scholar 

  46. L. Pocivavsek, R. Dellsy, A. Kern, S. Johnson, B.H. Lin, K.Y.C. Lee, E. Cerda, Science 320, 912 (2008)

    Article  ADS  Google Scholar 

  47. J. Huang, B. Davidovitch, C.D. Santangelo, T.P. Russell, N. Menon, Phys. Rev. Lett. 105, 038302 (2010)

    Article  ADS  Google Scholar 

  48. N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, G.M. Whiteside, Nature 393, 146 (1998)

    Article  ADS  Google Scholar 

  49. J.C. Géminard, R. Bernal, F. Melo, Eur. Phys. J. E 15, 117 (2004)

    Article  Google Scholar 

  50. E. Cerda, J. Biomech. 38, 1598 (2005)

    Article  Google Scholar 

  51. C.D. Coman, A.P. Bassom, J. Mech. Phys. Solids 55, 1601 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  52. C. Jooyoung, K. Toga, J. Paulsen, N. Menon, T. Russell, Macromolecules 51, 6764 (2018)

    Article  ADS  Google Scholar 

  53. B. Davidovitch, R.D. Schroll, E. Cerda, Phys. Rev. E 85, 066115 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Brau, E. Cerda, J. Chopin, P. Damman, A. Kudroli, and N. Menon for valuable discussions. This research was funded by the National Science Foundation under Grant DMR 1822439. Simulations were performed in the computing cluster of Massachusetts Green High Performance Computing Center (MGHPCC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benny Davidovitch.

Appendix: TFT simulations

Appendix: TFT simulations

In simulating a sheet with no bending rigidity, any compression gives rise to an infinitely corrugated shape, limited only by the mesh size. In order to check that these simulations provide the TFT solution reliably, we performed simulations with a sequence of mesh densities, starting with the “base” density \(\rho _n^{(0)} = 6.95 \times 10^5\), used in most of our simulations, then increasing the density to \(4 \rho _n^{(0)}\) and to \(16 \rho _n^{(0)}\). Figure 9 shows the numerical values of several macroscale features, which are predictable by TFT, for these mesh densities values. The variation among these different meshes is a tiny fraction (\(\lesssim 10^{-3}\)) of the characteristic differences between the TFT value and the finite-\(\epsilon \) simulations, from which we extract the scaling laws in Figs. 3 and 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, M., Davidovitch, B. Stretching Hookean ribbons part II: from buckling instability to far-from-threshold wrinkle pattern. Eur. Phys. J. E 44, 94 (2021). https://doi.org/10.1140/epje/s10189-021-00088-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00088-9

Navigation