Skip to main content
Log in

Effect of volume fraction on chains of superparamagnetic colloids at equilibrium

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

For a few decades, the influence of a magnetic field on the aggregation process of superparamagnetic colloids has been well known on short time scale. However, the accurate study of the equilibrium state is still challenging on some aspects. On the numerical aspect, current simulations have only access to a restricted set of experimental conditions due to the computational cost of long-range interactions in many-body systems. In the present paper, we numerically explore a new range of parameters thanks to sped up numerical simulations validated by a recent experimental and numerical study. We first show that our simulations reproduce results from previous study in well-established conditions. Then we show that unexpectedly long chains are observed for higher volume fractions and intermediate fields. We also present theoretical developments taking into account the interaction between the chains which are able to reproduce the data that we obtained with our simulations. We finally confirm this model thanks to experimental data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yu, B. Wang, X. Du, Q. Wang, L. Zhang, Nat. Commun. 9, 3260 (2018)

    ADS  Google Scholar 

  2. K. Müller, N. Osterman, D. Babič, C.N. Likos, J. Dobnikar, A. Nikoubashman, Langmuir 30, 5088 (2014)

    Google Scholar 

  3. M. Llera, J. Codnia, G.A. Jorge, J. Magn. & Magn. Mater. 384, 93 (2015)

    ADS  Google Scholar 

  4. R.M. Erb, H.S. Son, B. Samanta, V.M. Rotello, B.B. Yellen, Nature 457, 999 (2009)

    ADS  Google Scholar 

  5. H. Löwen, J. Phys.: Condens. Matter 20, 404201 (2008)

    Google Scholar 

  6. V. Froltsov, R. Blaak, C. Likos, H. Löwen, Phys. Rev. E 68, 061406 (2003)

    ADS  Google Scholar 

  7. F. Martinez-Pedrero, P. Tierno, Phys. Rev. Appl. 3, 051003 (2015)

    ADS  Google Scholar 

  8. F. Martinez-Pedrero, A. Ortiz-Ambriz, I. Pagonabarraga, P. Tierno, Phys. Rev. Lett. 115, 138301 (2015)

    ADS  Google Scholar 

  9. H. Carstensen, V. Kapaklis, M. Wolff, Phys. Rev. E 92, 012303 (2015)

    ADS  Google Scholar 

  10. P. Liu, J.W. De Folter, A.V. Petukhov, A.P. Philipse, Soft Matter 11, 6201 (2015)

    ADS  Google Scholar 

  11. D.L. Blair, A. Kudrolli, Phys. Rev. E 67, 021302 (2003)

    ADS  Google Scholar 

  12. P. Domínguez-García, J. Pastor, M. Rubio, Eur. Phys. J. E 34, 36 (2011)

    Google Scholar 

  13. P. Domínguez-García, S. Melle, J. Pastor, M. Rubio, Phys. Rev. E 76, 051403 (2007)

    ADS  Google Scholar 

  14. S. Merminod, T. Jamin, E. Falcon, M. Berhanu, Phys. Rev. E 92, 062205 (2015)

    ADS  Google Scholar 

  15. K.V. Edmond, H. Park, M.T. Elsesser, G.L. Hunter, D.J. Pine, E.R. Weeks, Chaos 21, 041103 (2011)

    ADS  Google Scholar 

  16. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)

    ADS  Google Scholar 

  17. J.W. Tavacoli, P. Bauër, M. Fermigier, D. Bartolo, J. Heuvingh, O. du Roure, Soft Matter 9, 9103 (2013)

    ADS  Google Scholar 

  18. U. Jeong, X. Teng, Y. Wang, H. Yang, Y. Xia, Adv. Mater. 19, 33 (2007)

    Google Scholar 

  19. J.L. Corchero, A. Villaverde, Trends Biotechnol. 27, 468 (2009)

    Google Scholar 

  20. B. Kozissnik, A.C. Bohorquez, J. Dobson, C. Rinaldi, Int. J. Hypertherm. 29, 706 (2013)

    Google Scholar 

  21. Q. Pankhurst, N. Thanh, S. Jones, J. Dobson, J. Phys. D: Appl. Phys. 42, 224001 (2009)

    ADS  Google Scholar 

  22. M. Colombo, S. Carregal-Romero, M.F. Casula, L. Gutiérrez, M.P. Morales, I.B. Böhm, J.T. Heverhagen, D. Prosperi, W.J. Parak, Chem. Soc. Rev. 41, 4306 (2012)

    Google Scholar 

  23. J. Faraudo, J.S. Andreu, J. Camacho, Soft Matter 9, 6654 (2013)

    ADS  Google Scholar 

  24. C.T. Yavuz, J. Mayo, W.Y. William, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson et al., Science 314, 964 (2006)

    Google Scholar 

  25. K.M. Krishnan, IEEE Trans. Magn. 46, 2523 (2010)

    ADS  Google Scholar 

  26. J.S. Andreu, J. Camacho, J. Faraudo, Soft Matter 7, 2336 (2011)

    ADS  Google Scholar 

  27. G.P. Gajula, M.T. Neves-Petersen, S.B. Petersen, Appl. Phys. Lett. 97, 103103 (2010)

    ADS  Google Scholar 

  28. K.S. Khalil, A. Sagastegui, Y. Li, M.A. Tahir, J.E. Socolar, B.J. Wiley, B.B. Yellen, Nat. Commun. 3, 794 (2012)

    ADS  Google Scholar 

  29. Y. Gurevich, Y. Mankov, R. Khlebopros, Dokl. Phys. 11, 478 (2013)

    ADS  Google Scholar 

  30. F. Martinez-Pedrero, P. Tierno, Phys. Rev. Appl. 3, 051003 (2015)

    ADS  Google Scholar 

  31. H. Carstensen, V. Kapaklis, M. Wolff, Phys. Rev. E 92, 012303 (2015)

    ADS  Google Scholar 

  32. C.T. Yavuz, A. Prakash, J. Mayo, V.L. Colvin, Chem. Eng. Sci. 64, 2510 (2009)

    Google Scholar 

  33. P. Domínguez-García, S. Melle, J. Pastor, M. Rubio, Phys. Rev. E 76, 051403 (2007)

    ADS  Google Scholar 

  34. J.H. Promislow, A.P. Gast, M. Fermigier, J. Chem. Phys. 102, 5492 (1995)

    ADS  Google Scholar 

  35. J. Faraudo, J. Camacho, Colloid Polym. Sci. 288, 207 (2010)

    Google Scholar 

  36. A. Darras, J. Fiscina, M. Pakpour, N. Vandewalle, G. Lumay, Eur. Phys. J. E 39, 47 (2016)

    Google Scholar 

  37. N. Rojas, A. Darras, G. Lumay, Phys. Rev. E 96, 012608 (2017)

    ADS  Google Scholar 

  38. A. Darras, J. Fiscina, N. Vandewalle, G. Lumay, Am. J. Phys. 85, 265 (2017)

    ADS  Google Scholar 

  39. A. Darras, E. Opsomer, N. Vandewalle, G. Lumay, Sci. Rep. 7, 7778 (2017)

    ADS  Google Scholar 

  40. M. Fermigier, A.P. Gast, J. Colloid Interface Sci. 154, 522 (1992)

    ADS  Google Scholar 

  41. H. Zhang, M. Widom, Phys. Rev. E 51, 2099 (1995)

    ADS  Google Scholar 

  42. S. Fraden, A.J. Hurd, R.B. Meyer, Phys. Rev. Lett. 63, 2373 (1989)

    ADS  Google Scholar 

  43. M. Kolb, Phys. Rev. Lett. 53, 1653 (1984)

    ADS  Google Scholar 

  44. F. Martínez-Pedrero, M. Tirado-Miranda, A. Schmitt, J. Callejas-Fernández, Phys. Rev. E 76, 011405 (2007)

    ADS  Google Scholar 

  45. S. Miyazima, P. Meakin, F. Family, Phys. Rev. A 36, 1421 (1987)

    ADS  Google Scholar 

  46. H. Ezzaier, J. Alves Marins, I. Razvin, M. Abbas, A. Ben Haj Amara, A. Zubarev, P. Kuzhir, J. Chem. Phys. 146, 114902 (2017)

    ADS  Google Scholar 

  47. J. Faraudo, J.S. Andreu, C. Calero, J. Camacho, Adv. Funct. Mater. 26, 3837 (2016)

    Google Scholar 

  48. R. Messina, L.A. Khalil, I. Stanković, Phys. Rev. E 89, 011202 (2014)

    ADS  Google Scholar 

  49. N. Vandewalle, S. Dorbolo, New J. Phys. 16, 013050 (2014)

    ADS  Google Scholar 

  50. T. Pöschel, T. Schwager, Computational Granular Dynamics: Models and Algorithms (Springer Science & Business Media, 2005)

  51. F. Radjaï, F. Dubois, Discrete-Element Modeling of Granular Materials (Wiley-Iste, 2011)

  52. J.Y. Ooi, V. Magnanimo, J. Sun, S. Luding, Powder Technol. 293, 1 (2016)

    Google Scholar 

  53. U. Welling, G. Germano, Comput. Phys. Commun. 182, 611 (2011)

    ADS  Google Scholar 

  54. N. Pottier, Physique statistique hors d’équilibre: processus irréversibles linéaires (EDP Sciences, 2007)

  55. Z. Peng, E. Doroodchi, G. Evans, Powder Technol. 204, 91 (2010)

    Google Scholar 

  56. A. Li, G. Ahmadi, Aerosol Sci. Technol. 16, 209 (1992)

    ADS  Google Scholar 

  57. J.N. Israelachvili, Intermolecular and Surface Forces, revised third edition (Academic Press, 2011)

  58. R. Messina, L. Spiteri, Eur. Phys. J. E 39, 81 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Darras.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darras, A., Opsomer, E., Vandewalle, N. et al. Effect of volume fraction on chains of superparamagnetic colloids at equilibrium. Eur. Phys. J. E 42, 123 (2019). https://doi.org/10.1140/epje/i2019-11883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11883-x

Keywords

Navigation