Skip to main content
Log in

Transport of dynamic biochemical signals in a microfluidic single cell trapping channel with varying cross-sections

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Dynamic biochemical signal control in vitro is important in the study of cellular responses to dynamic biochemical stimuli in microenvironment in vivo. To this end, we designed a microfluidic single cell trapping channel with varying cross-sections. In this work, we analyzed the transport of dynamic biochemical signals in steady and non-reversing pulsatile flows in such a microchannel. By numerically solving the 2D time-dependent Taylor-Aris dispersion equation, we studied the transport mechanism of different signals with varying parameters. The amplitude spectrum in steady flow shows that the trapping microchannel acts as a low-pass filter due to the longitudinal dispersion. The input signal can be modulated nonlinearly by the pulsatile flow. In addition, the nonlinear modulation effects are affected by the pulsatile flow frequency, the pulsatile flow amplitude and the average flow rate. When the flow frequency is much smaller or larger than that of the biochemical signal, the signal can be transmitted more efficiently. Besides, smaller pulsatile flow amplitude and larger average flow rate can decrease the nonlinear modulation and promote the signal transmission. These results demonstrate that in order to accurately load a desired dynamic biochemical signal to the trapped cell to probe the cellular dynamic response to the dynamic biochemical stimulus, the transport mechanism of the signals in the microchannel should be carefully considered.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Agteresch, P.C. Dagnelie, J.W.O. van den Berg, J.P. Wilson, Drugs 58, 211 (1999)

    Article  Google Scholar 

  2. E.W. Young, D.J. Beebe, Chem. Soc. Rev. 39, 1036 (2010)

    Article  Google Scholar 

  3. D.E. Discher, D.J. Mooney, P.W. Zandstra, Science 324, 1673 (2009)

    Article  ADS  Google Scholar 

  4. J.E. Purvis, G. Lahav, Cell 152, 945 (2013)

    Article  Google Scholar 

  5. J.H. Levine, Y. Lin, M.B. Elowitz, Science 342, 1193 (2013)

    Article  ADS  Google Scholar 

  6. B. Cheng, M. Lin, G. Huang, Y. Li, B. Ji, G.M. Genin, V.S. Deshpande, T.J. Lu, F. Xu, Phys. Life Rev. 22, 88 (2017)

    Article  Google Scholar 

  7. X.L. Zhang, H.B. Yin, J.M. Cooper, S.J. Haswell, Anal. Bioanal. Chem. 390, 833 (2008)

    Article  Google Scholar 

  8. B. Kuczenski, W.C. Ruder, W.C. Messner, P.R. LeDuc, PLoS ONE 4, e4847 (2009)

    Article  ADS  Google Scholar 

  9. Y. Kim, S.D. Joshi, W.C. Messner, P.R. LeDuc, L.A. Davidson, PLoS ONE 6, e14624 (2011)

    Article  ADS  Google Scholar 

  10. H. Shin, S.K. Mahto, J.H. Kim, S.W. Rhee, BioChip J. 5, 214 (2011)

    Article  Google Scholar 

  11. L.F. Li, C. Xiang, K.R. Qin, Biomech. Model. Mechanobiol. 14, 979 (2015)

    Article  Google Scholar 

  12. K.R. Qin, C. Xiang, L.L. Cao, Biomech. Model. Mechanobiol. 10, 743 (2011)

    Article  Google Scholar 

  13. G. Paolisso, A.J. Scheen, D. Giugliano, S. Sgambato, A. Albert, M. Varricchio, F. Donofrio, P.J. Lefébvre, J. Clin. Endocrinol. Metab. 72, 607 (1991)

    Article  Google Scholar 

  14. X. Zhang, A. Daou, T.M. Truong, R. Bertram, M.G. Roper, Am. J. Physiol. Endocrinol. Metab. 301, E742 (2011)

    Article  Google Scholar 

  15. L. Quagliaro, L. Piconi, R. Assaloni, R. Da Ros, A. Maier, G. Zuodar, A. Ceriello, Atherosclerosis 183, 259 (2005)

    Article  Google Scholar 

  16. N. Hao, E.K. O'Shea, Nat. Struct. Mol. Biol. 19, 31 (2012)

    Article  Google Scholar 

  17. A.S. Hansen, E.K. O'Shea, Mol. Syst. Biol. 9, 704 (2013)

    Article  Google Scholar 

  18. A.S. Hansen, N. Hao, E.K. O'Shea, Nat. Protoc. 10, 1181 (2015)

    Article  Google Scholar 

  19. K. Ramser, D. Hanstorp, J. Biophoton. 3, 187 (2010)

    Article  Google Scholar 

  20. B.M. Taff, J. Voldman, Anal. Chem. 77, 7976 (2005)

    Article  Google Scholar 

  21. W. Liu, N. Dechev, I.G. Foulds, R. Burke, A. Parameswaran, E.J. Park, Lab Chip 9, 2381 (2009)

    Article  Google Scholar 

  22. F. Petersson, L. Åberg, A.M. Swärd-Nilsson, T. Laurell, Anal. Chem. 79, 5117 (2007)

    Article  Google Scholar 

  23. K. Chung, C.A. Rivet, M.L. Kemp, H. Lu, Anal. Chem. 83, 7044 (2011)

    Article  Google Scholar 

  24. L. He, A. Kniss, A. San-Miguel, T. Rouse, M.L. Kemp, H. Lu, Lab Chip 15, 1497 (2015)

    Article  Google Scholar 

  25. W.H. Tan, S. Takeuchi, Proc. Natl. Acad. Sci. U.S.A. 104, 1146 (2007)

    Article  ADS  Google Scholar 

  26. W.H. Tan, S. Takeuchi, Lab Chip 8, 259 (2008)

    Article  Google Scholar 

  27. L.M. Lee, A.P. Liu, Lab Chip 15, 264 (2015)

    Article  Google Scholar 

  28. M. Tanyeri, E.M. Johnson-Chavarria, C.M. Schroeder, Appl. Phys. Lett. 96, 224101 (2010)

    Article  ADS  Google Scholar 

  29. M. Tanyeri, M. Ranka, N. Sittipolkul, C.M. Schroeder, Lab Chip 11, 1786 (2011)

    Article  Google Scholar 

  30. M. Yu, Z.Z. Chen, C. Xiang, B. Liu, H. Xie, K.R. Qin, Acta Mech. Sin. 32, 422 (2016)

    Article  ADS  Google Scholar 

  31. Y. Xie, Y. Wang, L. Chen, C. Mastrangelo, Lab Chip 8, 779 (2008)

    Article  Google Scholar 

  32. F. Azizi, C.H. Mastrangelo, Lab Chip 8, 907 (2008)

    Article  Google Scholar 

  33. F. Azizi, H. Lu, H.J. Chiel, C.H. Mastrangelo, J. Neurosci. Methods 192, 193 (2010)

    Article  Google Scholar 

  34. Y.J. Li, Y.Z. Li, T. Cao, K.R. Qin, J. Biomech. Eng. 135, 121011 (2013)

    Article  Google Scholar 

  35. Z.Z. Chen, W.M. Yuan, A. Aziz, Z.M. Gao, D.P. Zeng, B. Liu, K. Qin, Appl. Math. Mech. 38, 1481 (2017)

    Article  Google Scholar 

  36. Y.J. Li, T. Cao, K.R. Qin, Microfluid. Nanofluid. 22, 81 (2018)

    Article  Google Scholar 

  37. K.R. Qin, X.Q. Hu, Z.R. Liu, J. Hydrodyn., Ser. B 19, 113 (2007)

    Article  ADS  Google Scholar 

  38. Y. Lam, X. Chen, C. Yang, Microfluid. Nanofluid. 1, 218 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Rong Qin.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Li, YJ., Shao, JY. et al. Transport of dynamic biochemical signals in a microfluidic single cell trapping channel with varying cross-sections. Eur. Phys. J. E 42, 33 (2019). https://doi.org/10.1140/epje/i2019-11793-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11793-y

Keywords

Navigation