Skip to main content
Log in

Particle-laden two-dimensional elastic turbulence

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The aggregation properties of heavy inertial particles in the elastic turbulence regime of an Oldroyd-B fluid with periodic Kolmogorov mean flow are investigated by means of extensive numerical simulations in two dimensions. Both the small- and large-scale features of the resulting inhomogeneous particle distribution are examined, focusing on their connection with the properties of the advecting viscoelastic flow. We find that particles preferentially accumulate on thin highly elastic propagating structures and that this effect is the largest for intermediate values of particle inertia. We provide a quantitative characterization of this phenomenon that allows to relate it to the accumulation of particles in filamentary highly strained flow regions producing clusters of correlation dimension close to 1. At larger scales, particles are found to undergo turbophoretic-like segregation. Indeed, our results indicate a close relationship between the profiles of particle density and fluid velocity fluctuations. The large-scale inhomogeneity of the particle distribution is interpreted in the framework of a model derived in the limit of small, but finite, particle inertia. The qualitative characteristics of different observables are, to a good extent, independent of the flow elasticity. When increased, the latter is found, however, to slightly reduce the globally averaged degree of turbophoretic unmixing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Groisman, V. Steinberg, Nature 405, 53 (2000)

    Article  ADS  Google Scholar 

  2. A. Groisman, V. Steinberg, Nature 410, 905 (2001)

    Article  ADS  Google Scholar 

  3. L. Pan, A. Morozov, C. Wagner, P. Arratia, Phys. Rev. Lett. 110, 174502 (2013)

    Article  ADS  Google Scholar 

  4. A. Souliès, J. Aubril, C. Castelain, T. Burghelea, Phys. Fluids 29, 083102 (2017)

    Article  ADS  Google Scholar 

  5. P.C. Sousa, F.T. Pinho, M.A. Alves, Soft Matter 14, 1344 (2018)

    Article  ADS  Google Scholar 

  6. B. Traore, C. Castelain, T. Burghelea, J. Non-Newton. Fluid Mech. 223, 62 (2015)

    Article  MathSciNet  Google Scholar 

  7. W.M. Abed, R.D. Whalley, D.J.C. Dennis, R.J. Poole, J. Non-Newton. Fluid Mech. 231, 68 (2016)

    Article  Google Scholar 

  8. R.J. Poole, B. Budhiraja, A.R. Cain, P.A. Scott, J. Non-Newton. Fluid Mech. 177, 15 (2012)

    Article  Google Scholar 

  9. J. Mitchell, K. Lyons, A.M. Howe, A. Clarke, Soft Matter 12, 460 (2016)

    Article  ADS  Google Scholar 

  10. K.D. Squires, J.K. Eaton, Phys. Fluids A 3, 1169 (1991)

    Article  ADS  Google Scholar 

  11. F. Picano, G. Sardina, C.M. Casciola, Phys. Fluids 21, 093305 (2009)

    Article  ADS  Google Scholar 

  12. G. Sardina, P. Schlatter, L. Brandt, F. Picano, C.M. Casciola, J. Fluid Mech. 699, 50 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. F. De Lillo, M. Cencini, S. Musacchio, G. Boffetta, Phys. Fluids 28, 035104 (2016)

    Article  ADS  Google Scholar 

  14. D. Mitra, N.E.L. Haugen, I. Rogachevskii, Eur. Phys. J. Plus 133, 35 (2018)

    Article  Google Scholar 

  15. J. Bec, Phys. Fluids 15, L81 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  16. E. Calzavarini, M. Kerscher, D. Lohse, F. Toschi, J. Fluid Mech. 607, 13 (2008)

    Article  ADS  Google Scholar 

  17. F. Toschi, E. Bodenschatz, Annu. Rev. Fluid Mech. 41, 375 (2009)

    Article  ADS  Google Scholar 

  18. F. De Lillo, G. Boffetta, S. Musacchio, Phys. Rev. E 85, 036308 (2012)

    Article  ADS  Google Scholar 

  19. A. Nowbahar, G. Sardina, F. Picano, L. Brandt, J. Fluid Mech. 732, 706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Afik, V. Steinberg, Nat. Commun. 8, 468 (2017)

    Article  ADS  Google Scholar 

  21. B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Fluids (Wiley, New York, 1987)

  22. S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, Phys. Rev. E 77, 055306(R) (2008)

    Article  ADS  Google Scholar 

  23. S. Berti, G. Boffetta, Phys. Rev. E 82, 036314 (2010)

    Article  ADS  Google Scholar 

  24. E.L.C. VI, M. Plan, A. Gupta, D. Vincenzi, J.D. Gibbon, J. Fluid Mech. 822, R4 (2017)

    Article  Google Scholar 

  25. G. Boffetta, A. Celani, A. Mazzino, A. Puliafito, M. Vergassola, J. Fluid Mech. 523, 161 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  26. M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)

    Article  ADS  Google Scholar 

  27. R. Sureshkumar, A.N. Beris, J. Non-Newton. Fluid Mech. 60, 53 (1995)

    Article  Google Scholar 

  28. T. Vaithianathan, L.R. Collins, J. Comput. Phys. 187, 1 (2003)

    Article  ADS  Google Scholar 

  29. A. Fouxon, V. Lebedev, Phys. Fluids 15, 2060 (2003)

    Article  ADS  Google Scholar 

  30. E. De Angelis, C.M. Casciola, R. Piva, Physica D 241, 297 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  31. M.Q. Nguyen, A. Delache, S. Simoëns, W.J.T. Bos, M. El Hajem, Phys. Rev. Fluids 1, 083301 (2016)

    Article  ADS  Google Scholar 

  32. Y. Jun, V. Steinberg, Phys. Rev. Fluids 2, 103301 (2017)

    Article  ADS  Google Scholar 

  33. A. Gupta, R. Pandit, Phys. Rev. E 95, 033119 (2017)

    Article  ADS  Google Scholar 

  34. M.R. Maxey, J. Fluid Mech. 174, 441 (1987)

    Article  ADS  Google Scholar 

  35. J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi, J. Fluid Mech. 550, 349 (2006)

    Article  ADS  Google Scholar 

  36. A. Okubo, Deep-Sea Res. 17, 445 (1970)

    Google Scholar 

  37. J. Weiss, Physica D 48, 273 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. K. Gustavvson, B. Mehlig, Adv. Phys. 65, 1 (2016)

    Article  ADS  Google Scholar 

  39. P. Grassberger, I. Procaccia, Phys. Rev. Lett. 50, 346 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  40. G. Falkovich, A. Fouxon, M.G. Stepanov, Nature 419, 151 (2002)

    Article  ADS  Google Scholar 

  41. J. Bec, J. Fluid Mech. 528, 255 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Caporaloni, F. Tampieri, F. Trombetti, O. Vittori, J. Atmos. Sci. 32, 565 (1975)

    Article  ADS  Google Scholar 

  43. J.W. Brooke, K. Kontomaris, T. Hanratty, J.B. McLaughlin, Phys. Fluids A 4, 825 (1992)

    Article  ADS  Google Scholar 

  44. S. Belan, I. Fouxon, G. Falkovich, Phys. Rev. Lett. 112, 234502 (2014)

    Article  ADS  Google Scholar 

  45. A. Guha, J. Aerosol Sci. 28, 1517 (1997)

    Article  ADS  Google Scholar 

  46. J.O. Hinze, Turbulence: An Introduction to its Mechanism and Theory (McGraw-Hill, New York, 1959)

  47. Y. Liu, V. Steinberg, EPL 90, 44002 (2010)

    Article  ADS  Google Scholar 

  48. A. Nowbahar, G. Sardina, F. Picano, L. Brandt, J. Fluid Mech. 732, 706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Himani Garg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, H., Calzavarini, E., Mompean, G. et al. Particle-laden two-dimensional elastic turbulence. Eur. Phys. J. E 41, 115 (2018). https://doi.org/10.1140/epje/i2018-11726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11726-4

Keywords

Navigation