Skip to main content
Log in

Distinctive diffusive properties of swimming planktonic copepods in different environmental conditions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract.

Suspensions of small planktonic copepods represent a special category in the realm of active matter, as their size falls within the range of colloids, while their motion is so complex that it cannot be rationalized according to basic models of self-propelled particles. Indeed, the wide range of individual variability and swimming patterns resemble the behaviour of much larger animals. By analysing hundreds of three-dimensional trajectories of the planktonic copepod Clausocalanus furcatus, we investigate the possibility of detecting how the motion of this species is affected by different external conditions, such as the presence of food and the effect of gravity. While this goal is hardly achievable by direct inspection of single organism trajectories, we show that this is possible by focussing on simple average metrics commonly used to characterize colloidal suspensions, such as the mean square displacement and the dynamic correlation functions. We find that the presence of food leads to the onset of a clear localization that separates a short-time ballistic from a long-time diffusive regime. Such a benchmark reflects the tendency of C. furcatus to remain temporally feeding in a limited space and disappears when food is absent. Localization is clearly evident in the horizontal plane, but is negligible in the vertical direction, due to the effect of gravity. Our results suggest that simple average descriptors may provide concise and useful information on the swimming properties of planktonic copepods, even though single organism behaviour is strongly heterogeneous.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tilman, P.M. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions, Vol. 30 (Princeton University Press, 1997)

  2. M. Begon, C.R. Townsend, J.L. Harper, Ecology: From Individuals to Ecosystems (Wiley-Blackwell, 2005) ISBN: 978-1-405-11117-1

  3. A. Okubo, Diffusion and Ecological Problems: Mathematical Models (Springer, 1980) ISBN: 9783540096207

  4. J.G. Skellam, Biometrika 38, 196 (1951)

    Article  MathSciNet  Google Scholar 

  5. K. Von Frisch, The Dance Language and Orientation of Bees (Harvard University Press, 1967)

  6. G. Bianco, V. Botte, L. Dubroca, M. Ribera d’Alcalá, M.G. Mazzocchi, PloS ONE 8, e67640 (2013)

    Article  ADS  Google Scholar 

  7. R. Nathan, W.M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, P.E. Smouse, Proc. Natl. Acad. Sci. U.S.A. 105, 19052 (2008)

    Article  ADS  Google Scholar 

  8. P.G. Verity, V. Smetacek, Mar. Ecol. Prog. Ser. 130, 277 (1996)

    Article  ADS  Google Scholar 

  9. J. Yen, Biol. Bull. 198, 213 (2000)

    Article  Google Scholar 

  10. M.G. Mazzocchi, G.A. Paffenhöfer, J. Plankton Res. 21, 1501 (1999)

    Article  Google Scholar 

  11. T. Kiørboe, A Mechanistic Approach to Plankton Ecology (Princeton University Press, 2008)

  12. A.W. Visser, T. Kiørboe, Oecologia 148, 538 (2006)

    Article  ADS  Google Scholar 

  13. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Rev. Mod. Phys. 83, 81 (2011)

    Article  ADS  Google Scholar 

  14. M. Chupeau, O. Bénichou, R. Voituriez, Nat. Phys. 11, 844 (2015)

    Article  Google Scholar 

  15. O. Bénichou, M. Coppey, M. Moreau, P. Suet, R. Voituriez, Phys. Rev. Lett. 94, 198101 (2005)

    Article  ADS  Google Scholar 

  16. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Phys. Rev. E 74, 020102 (2006)

    Article  Google Scholar 

  17. M. Webber, J. Roff, Mar. Biol. 123, 467 (1995)

    Article  Google Scholar 

  18. I. Siokou Frangou, E. Christou, N. Fragopoulu, M.G. Mazzocchi, Oceanolica Acta 20, 537 (1997)

    Google Scholar 

  19. À. Peralba, M.G. Mazzocchi, ICES J. Mar. Sci. 61, 645 (2004)

    Article  Google Scholar 

  20. M.G. Mazzocchi, M. Ribera d’Alcalá, ICES J. Mar. Sci. 52, 679 (1995)

    Article  Google Scholar 

  21. M.G. Mazzocchi, P. Licandro, L. Dubroca, I. Di Capua, V. Saggiomo, J. Plankton Res. 33, 1163 (2011)

    Article  Google Scholar 

  22. M.G. Mazzocchi, L. Dubroca, C. García-Comas, I. Di Capua, M. Ribera d’Alcalá, Prog. Oceanogr. 97, 135 (2012)

    Article  ADS  Google Scholar 

  23. M. Uttieri, G.A. Paffenhöfer, M.G. Mazzocchi, Mar. Biol. 153, 925 (2008)

    Article  Google Scholar 

  24. M. Uttieri, E.R. Brown, G.A. Boxshall, M.G. Mazzocchi, J. Marine Biol. Assoc. U.K. 88, 535 (2008)

    Article  Google Scholar 

  25. R. Candelier, A. Widmer-Cooper, J.K. Kummerfeld, O. Dauchot, G. Biroli, P. Harrowell, D.R. Reichman, Phys. Rev. Lett. 105, 135702 (2010)

    Article  ADS  Google Scholar 

  26. G. Bianco, P. Mariani, A.W. Visser, M.G. Mazzocchi, S. Pigolotti, J. R. Soc. Interface 11, 20140164 (2014)

    Article  Google Scholar 

  27. M. Zarubin, V. Farstey, A. Wold, S. Falk-Petersen, A. Genin, PloS ONE 9, e92935 (2014)

    Article  ADS  Google Scholar 

  28. L. Berthier, G. Biroli, Rev. Mod. Phys. 83, 587 (2011)

    Article  ADS  Google Scholar 

  29. A. Cavagna, Phys. Rep. 476, 51 (2009)

    Article  ADS  Google Scholar 

  30. E.R. Weeks, D. Weitz, Phys. Rev. Lett. 89, 095704 (2002)

    Article  ADS  Google Scholar 

  31. R. Pastore, G. Pesce, A. Sasso, M. Pica Ciamarra, J. Phys. Chem. Lett. 8, 1562 (2017)

    Article  Google Scholar 

  32. R. Pastore, A. Coniglio, A. de Candia, A. Fierro, M.P. Ciamarra, J. Stat. Mech.: Theory Exp. 2016, 054050 (2016)

    Article  Google Scholar 

  33. R. Pastore, A. Coniglio, M.P. Ciamarra, Soft Matter 11, 7214 (2015)

    Article  ADS  Google Scholar 

  34. F. Bartumeus, Fractals 15, 151 (2007)

    Article  Google Scholar 

  35. H. Ardeshiri, F. Schmitt, S. Souissi, F. Toschi, E. Calzavarini, J. Plankton Res. 39, 878 (2017)

    Article  Google Scholar 

  36. Y. Meroz, I.M. Sokolov, Phys. Rep. 573, 1 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  37. C. Malinverno, S. Corallino, F. Giavazzi, M. Bergert, Q. Li, M. Leoni, A. Disanza, E. Frittoli, A. Oldani, E. Martini et al., Nat. Mater. 16, 587 (2017)

    Article  ADS  Google Scholar 

  38. C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    Article  ADS  Google Scholar 

  39. L. Janssen, A. Kaiser, H. Löwen, Sci. Rep. 7, 5667 (2017)

    Article  ADS  Google Scholar 

  40. N. Gravish, G. Gold, A. Zangwill, M.A. Goodisman, D.I. Goldman, Soft Matter 11, 6552 (2015)

    Article  ADS  Google Scholar 

  41. M. Uttieri, L. Sabia, D. Cianelli, J. Strickler, E. Zambianchi, J. Mar. Syst. 81, 112 (2010)

    Article  ADS  Google Scholar 

  42. B. Nilsson, H.H. Jakobsen, P. Stief, G. Drillet, B.W. Hansen, Aquacult. Rep. 6, 35 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Pastore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastore, R., Uttieri, M., Bianco, G. et al. Distinctive diffusive properties of swimming planktonic copepods in different environmental conditions. Eur. Phys. J. E 41, 79 (2018). https://doi.org/10.1140/epje/i2018-11688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11688-5

Keywords

Navigation