Skip to main content
Log in

Nonlinear mechanical behaviors of a nanoparticle monolayer at the air-water interface

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Nanoparticle can adsorb at the air-water interface and gives rise to the special interfacial mechanical properties. With the influence of external stimulus, the adsorption state of the particles may be changed and in turn the mechanical properties of the particle layer. In this work, we study the mechanical properties of a monolayer of silica nanoparticles deposited in the Langmuir trough. The area of the monolayer was varied sinusoidally by two oscillating barriers and the surface pressure was monitored by two orthogonal Wilhelmy plates. It has been found that the surface pressure of the particle layer exhibits a significant anisotropic effect. At the early stage of the oscillation, the surface pressure versus time is sinusoidal. However, with the increase of the oscillation time, the response of the particle layer significantly deviates the sinusoidal function, which implies that the response becomes nonlinear caused by a long-term oscillation. The fast Fourier Transformation (FFT) of the surface pressure data shows that the non-sinusoidal response is composed of several fundamental frequency responses. We eventually obtained the time variation of the compression modulus E and shear modulus G . A possible mechanism was proposed to account for the mechanical properties change and the nonlinear behavior of the particle monolayer.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.P. Binks, Curr. Opin. Colloid Interface Sci. 7, 21 (2002)

    Article  Google Scholar 

  2. K. Stratford, R. Adhikari, I. Pagonabarraga, J.C. Desplat, M.E. Cates, Science 309, 2198 (2005)

    Article  ADS  Google Scholar 

  3. B. Hu, Y. Wu, Nat. Mater. 6, 985 (2007)

    Article  ADS  Google Scholar 

  4. A.J. Mendoza, E. Guzmán, F. Martínez-Pedrero, H. Ritacco, R.G. Rubio, F. Ortega, V.M. Starov, R. Miller, Adv. Colloid Interface Sci. 206, 303 (2014)

    Article  Google Scholar 

  5. D.Y. Zang, Y.J. Zhang, D. Langevin, Acta Phys. Sin. 60, 076801 (2011)

    Google Scholar 

  6. R.V. Hooghten, V.E. Blair, A. Vananroye, A.B. Schofield, J. Vermant, J.H.J. Thijssen, Langmuir 33, 4107 (2017)

    Article  Google Scholar 

  7. A. Stocco, W. Drenckhan, E. Rio, D. Langevin, B.P. Binks, Soft Matter 5, 2215 (2009)

    Article  ADS  Google Scholar 

  8. E.M. Herzig, K.A. White, A.B. Schofield et al., Nat. Mater. 6, 966 (2007)

    Article  ADS  Google Scholar 

  9. H. Hilles, A. Maestro, F. Monroy, F. Ortega, R.G. Rubio, M.G. Velarde, J. Chem. Phys. 126, 124904 (2007)

    Article  ADS  Google Scholar 

  10. J. Pelipenko, J. Kristl, R. Rosic, S. Baumgartner, P. Kocbek, Acta Pharm. 62, 123 (2012)

    Article  Google Scholar 

  11. P.F. Philipp Erni, Erich J. Windhab Victor Kusnezov, Heiko Stettin, Jörg Läuger, Rev. Sci. Instrum. 74, 4916 (2003)

    Article  ADS  Google Scholar 

  12. D.Y. Zang, Z. Chen, X.G. Geng, Appl. Phys. Lett. 108, 031603 (2016)

    Article  ADS  Google Scholar 

  13. D.Y. Zang, Y.K. Yu, Z. Chen, X.G. Li, H.J. Wu, X.G. Geng, Adv. Colloid Interface Sci. 243, 77 (2017)

    Article  Google Scholar 

  14. Jordan T. Petkov, Theodor D. Gurkov, Bruce E. Campbell, Rajendra P. Borwankar, Langmuir 16, 3703 (2000)

    Article  Google Scholar 

  15. T.A.M. Ferenczi, P. Cicuta, J. Phys. 17, S3445 (2005)

    Google Scholar 

  16. D.Y. Zang, E. Rio, G. Delon, D. Langevin, B. Wei, B.P. Binks, Mol. Phys. 109, 1057 (2011)

    Article  ADS  Google Scholar 

  17. B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)

    Article  Google Scholar 

  18. D.Y. Zang, A. Stocco, D. Langevin, B. Wei, B.P. Binks, Phys. Chem. Chem. Phys. 11, 9522 (2009)

    Article  Google Scholar 

  19. D.Y. Zang, E. Rio, D. Langevin, B. Wei, B.P. Binks, Eur. Phys. J. E 31, 125 (2010)

    Article  Google Scholar 

  20. A.B. Subramaniam, M. Abkarian, H.A. Stone, Nat. Mater. 4, 553 (2005)

    Article  ADS  Google Scholar 

  21. X. Li, Y. Xue, P. Lv, H. Lin, F. Du, Y. Hu, J. Shen, H. Duan, Soft Matter 12, 1655 (2016)

    Article  ADS  Google Scholar 

  22. D. Frydel, S. Dietrich, M. Oettel, Phys. Rev. Lett. 99, 118302 (2007)

    Article  ADS  Google Scholar 

  23. S. Schmidt, T. Hellweg, R. von Klitzing, Langmuir 24, 12595 (2008)

    Article  Google Scholar 

  24. G. Boniello, C. Blanc, D. Fedorenko, M. Medfai, N.B. Mbarek, M. In, M. Gross, A. Stocco, M. Nobili, Nat. Mater. 14, 908 (2015)

    Article  ADS  Google Scholar 

  25. P. Cicuta, E.M. Terentjev, Eur. Phys. J. E 16, 147 (2005)

    Article  Google Scholar 

  26. D.Y. Zang, Y.J. Zhang, Q.W. Hou, Colloids Surf. A 395, 262 (2012)

    Article  Google Scholar 

  27. F. M. Hani Hilles, Laura J. Bonales, Francisco Ortega, Ramón G. Rubio, Adv. Colloid Interface Sci. 122, 67 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Si, J., Cui, Q. et al. Nonlinear mechanical behaviors of a nanoparticle monolayer at the air-water interface. Eur. Phys. J. E 41, 29 (2018). https://doi.org/10.1140/epje/i2018-11633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2018-11633-8

Keywords

Navigation