Skip to main content
Log in

Finding efficient swimming strategies in a three-dimensional chaotic flow by reinforcement learning

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We apply a reinforcement learning algorithm to show how smart particles can learn approximately optimal strategies to navigate in complex flows. In this paper we consider microswimmers in a paradigmatic three-dimensional case given by a stationary superposition of two Arnold-Beltrami-Childress flows with chaotic advection along streamlines. In such a flow, we study the evolution of point-like particles which can decide in which direction to swim, while keeping the velocity amplitude constant. We show that it is sufficient to endow the swimmers with a very restricted set of actions (six fixed swimming directions in our case) to have enough freedom to find efficient strategies to move upward and escape local fluid traps. The key ingredient is the learning-from-experience structure of the algorithm, which assigns positive or negative rewards depending on whether the taken action is, or is not, profitable for the predetermined goal in the long-term horizon. This is another example supporting the efficiency of the reinforcement learning approach to learn how to accomplish difficult tasks in complex fluid environments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.J. Pedley, J.O. Kessler, Annu. Rev. Fluid Mech. 24, 313 (1992)

    Article  ADS  Google Scholar 

  2. T. Fenchel, Science 296, 1068 (2002)

    Article  ADS  Google Scholar 

  3. T. Kiørboe, G.A. Jackson, Limnol. Oceanogr. 46, 1309 (2001)

    Article  ADS  Google Scholar 

  4. E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    Article  ADS  Google Scholar 

  5. S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)

    Article  ADS  Google Scholar 

  6. A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)

    Article  ADS  Google Scholar 

  7. A.R. Hall, J. Carpenter, A. Shields, K. Ford, M. Millard, L.O. Mair, B. Evans, R. Superfine, J. Phys. D 44, 125001 (2011)

    Article  ADS  Google Scholar 

  8. P. Fischer, A. Ghosh, Nanoscale 3, 557 (2011)

    Article  ADS  Google Scholar 

  9. J. Wang, W. Gao, ACS Nano 6, 5745 (2012)

    Article  Google Scholar 

  10. B. Hejazialhossein, M. Gazzola, P. Koumoutsakos, SIAM J. Sci. Comput. 36, B622 (2014)

    Article  Google Scholar 

  11. D. Alexeev, A. de Brauer, P. Koumoutsakos, M. Gazzola, A.A. Tchieu, J. Fluid Mech. 789, 726 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biol. Eng. 12, 55 (2010)

    Article  Google Scholar 

  13. W. Gao, J. Wang, ACS Nano 8, 3170 (2014)

    Article  Google Scholar 

  14. L.K.E. Abdelmohsen, F. Peng, Y. Tu, D.A. Wilson, J. Mater. Chem. B 2, 2395 (2014)

    Article  Google Scholar 

  15. D. Patra, S. Sengupta, W. Duan, H. Zhang, R. Pavlick, A. Sen, Nanoscale 5, 1273 (2013)

    Article  ADS  Google Scholar 

  16. G. Reddy, A. Celani, T.J. Sejnowski, M. Vergassola, Proc. Natl. Acad. Sci. U.S.A. 113, E4877 (2016)

    Article  ADS  Google Scholar 

  17. S. Colabrese, K. Gustavsson, A. Celani, L. Biferale, Phys. Rev. Lett. 118, 158004 (2017)

    Article  ADS  Google Scholar 

  18. M. Cencini, F. Santamaria, F. De Lillo, G. Boffetta, Phys. Fluids 26, 111901 (2014)

    Article  ADS  Google Scholar 

  19. J.O. Kessler, W.M. Durham, R. Stocker, Science 323, 1067 (2009)

    Article  ADS  Google Scholar 

  20. M. Barry, F. De Lillo, G. Boffetta, M. Cencini, W.M. Durham, E. Climent, R. Stocker, Nat. Commun. 4, 2148 (2013)

    Google Scholar 

  21. A. Puglisi, A. Sarracino, F. Cecconi, A. Vulpiani, Phys. Rev. Lett. 117, 174501 (2016)

    Article  ADS  Google Scholar 

  22. F. Cecconi, A. Puglisi, A. Sarracino, A. Vulpiani, Eur. Phys. J. E 40, 81 (2017)

    Article  Google Scholar 

  23. E.M. Purcell, Am. J. Phys. 45, 1 (1977)

    Article  ADS  Google Scholar 

  24. P.R. Jonsson, K. Gustavsson, F. Berglund, B. Mehlig, Phys. Rev. Lett. 116, 108104 (2016)

    Article  ADS  Google Scholar 

  25. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (MIT Press, Cambridge, 1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Colabrese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustavsson, K., Biferale, L., Celani, A. et al. Finding efficient swimming strategies in a three-dimensional chaotic flow by reinforcement learning. Eur. Phys. J. E 40, 110 (2017). https://doi.org/10.1140/epje/i2017-11602-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11602-9

Keywords

Navigation