Skip to main content
Log in

Active force maintains the stability of a contractile ring

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate a system of sufficiently dense polar actin filaments considered rigid and cross-linked by dimer myosin II protein within the contractile ring. The Langevin dynamics of this system is cast in a functional integral formalism and then transformed into density variables. Using the dynamical Random Phase Approximation (RPA) along with the a one-dimensional Langevin dynamics simulation (LDS), we investigate the structural integrity of the actin bundle network. The active force and the networking force reveal a non-trivial diffusive behaviour of the filaments within the ring. We conclude on when the active and networking forces lead to the contractile ring breaking down. The non-equilibrium active force is predominantly responsible for the prevention of the gaps in the ring.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Marcland, J.V. Landau, J. Exp. Zool. 125, 507 (1954)

    Article  Google Scholar 

  2. T.D. Pollard, Biochem. Soc. 36, 425 (2008)

    Article  Google Scholar 

  3. T.E. Schroeder, J. Cell Biol. 53, 419 (1972)

    Article  Google Scholar 

  4. H.E. Huxley, Eur. J. Biochem. 271, 1403 (2004)

    Article  Google Scholar 

  5. M. Mavrakis, Y. Azou-Gros, F.-G. Tsai, J. Alvarado, A. Bertin, F. Iv, A. Kress, S. Brasselet, G.H. Koenderink, T. Lecuit, Nat. Cell Biol. 16, 322 (2014)

    Article  Google Scholar 

  6. D. Biron, E. Alvarez-Lacalle, T. Tlusty, E. Moses, Phys. Rev. Lett. 95, 098102 (2005)

    Article  ADS  Google Scholar 

  7. K. Kruse, F. Jülicher, Phys. Rev. Lett. 85, 1778 (2000)

    Article  ADS  Google Scholar 

  8. K. Kruse, F. Jülicher, Phys. Rev. E 67, 051913 (2003)

    Article  ADS  Google Scholar 

  9. A.L. Miller, Curr. Biol. 21, 976 (2011)

    Article  Google Scholar 

  10. J.C. Canman, W.A. Wells, J. Cell Biol. 166, 22 (2004)

    Article  Google Scholar 

  11. M. Lenz, M.L. Gardel, A.R. Dinner, New J. Phys. 14, 033037 (2012)

    Article  ADS  Google Scholar 

  12. P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, 423 (1973)

    Article  ADS  Google Scholar 

  13. G.H. Fredrickson, E. Helfand, J. Chem. Phys. 93, 2048 (1990)

    Article  ADS  Google Scholar 

  14. B. Jouvet, R. Phythian, Phys. Rev. A. 19, 1350 (1979)

    Article  ADS  Google Scholar 

  15. R.V. Jensen, J. Stat. Phys. 25, 183 (1981)

    Article  ADS  Google Scholar 

  16. N. Grønbech-Jensen, O. Farago, Mol. Phys. 111, 983 (2013)

    Article  ADS  Google Scholar 

  17. M. Takaine, O. Numata, K. Nakano, J. Cell Sci. 128, 2903 (2015)

    Article  Google Scholar 

  18. T. Kamasaki, M. Osumi, I. Mabuchi, J. Cell Biol. 178, 765 (2007)

    Article  Google Scholar 

  19. V. Wollrab, R. Thiagarajan, A. Wald, K. Kruse, D. Riveline, Nat. Commun. 7, 11860 (2016)

    Article  ADS  Google Scholar 

  20. A. Carvalho, A. Desai, K. Oegema, Cell 137, 926 (2009)

    Article  Google Scholar 

  21. K. Kruse, A. Zumdieck, F. Jülicher, Europhys. Lett. 64, 716 (2003)

    Article  ADS  Google Scholar 

  22. M. Lenz, T. Thoresen, M.L. Gardel, A.R. Dinner, Phys. Rev. Lett. 108, 238107 (2012)

    Article  ADS  Google Scholar 

  23. K.K. Müller-Nedebock, T.A. Vilgis, Macromolecules 31, 5898 (1998)

    Article  ADS  Google Scholar 

  24. K.K. Müller-Nedebock, T.A. Vilgis, J. Chem. Phys. 110, 4651 (1999)

    Article  ADS  Google Scholar 

  25. M. Castelnovo, F. Joanny, Eur. Phys. J. E 6, 377 (2001)

    Article  Google Scholar 

  26. M. Mateyisi, Particle diffusion in elastically coupled narrow parallel channels, PhD Thesis, Stellenbosch University (2014)

  27. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, 1996) pp. 63--107

  28. M.P. Allen, D.T. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989) pp. 38--42, 71--108

  29. M.P. Allen, Introduction to Molecular Dynamics Simulation, Vol. 23 (John von Neumann-Institut für Computing (NIC), Jülich, 2004)

  30. N. Goga, A.J. Rzepiela, A.H. de Vries, S.J. Marrink, H.J.C. Berendsen, J. Chem. Theory Comput. 8, 3637 (2012)

    Article  Google Scholar 

  31. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates Publishers, Sunderland, Mass., 2001) pp. 229--231

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanard Mebwe Pachong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pachong, S.M., Müller-Nedebock, K.K. Active force maintains the stability of a contractile ring. Eur. Phys. J. E 40, 91 (2017). https://doi.org/10.1140/epje/i2017-11581-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11581-9

Keywords

Navigation