Skip to main content
Log in

Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Deraguin, L. Landau, Acta Physiochim. URSS 14, 633 (1941)

    Google Scholar 

  2. E.J.W. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1941)

  3. J.N. Israelachvili, Intermolecular and Surface Forces (Academic Press, London, 2011)

  4. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 4853 (1986)

    Article  Google Scholar 

  5. A. Askin, Proc. Natl. Acad. Sci. U.S.A. 94, 288 (1996)

    Google Scholar 

  6. T.P. Koehler, C.M. Brotherton, A.M. Grillet, Colloids Surf. A: Physicochem. Eng. Aspects 384, 282 (2011)

    Article  Google Scholar 

  7. C. Gutsche, U.F. Keyser, F. Kremer, Phys. Rev. E 76, 031403 (2007)

    Article  ADS  Google Scholar 

  8. M.M. Elmahdy, A. Synytska, A. Drechsler, C. Gutsche, P. Uhlmann, M. Stamm, F. Kremer, Macromolecules 42, 9096 (2009)

    Article  ADS  Google Scholar 

  9. M.M. Elmahdy, C. Gutsche, F. Kremer, Langmuir 25, 12894 (2009)

    Article  Google Scholar 

  10. M.M. Elmahdy, C. Gutsche, F. Kremer, J. Phys. Chem. C 114, 19452 (2010)

    Article  Google Scholar 

  11. C. Wagner, D. Singer, O. Ueberschär, T. Stangner, C. Gutsche, R. Hoffmann, F. Kremer, Soft Matter 7, 4370 (2011)

    Article  ADS  Google Scholar 

  12. O. Ueberschär, C. Wagner, T. Stangner, C. Gutsche, F. Kremer, Opt. Laser Eng. 50, 423 (2012)

    Article  Google Scholar 

  13. A. Raudsepp, M.R. Griffiths, A.J. Sutherland-Smith, M.A.K. Williams, Appl. Opt. 54, 9518 (2015)

    Article  ADS  Google Scholar 

  14. M.R. Griffiths, A. Raudsepp, K.M. McGrath, M.A.K. Williams, RSC Adv. 18, 14538 (2016)

    Article  Google Scholar 

  15. J.C. Crocker, D.G. Grier, Phys. Rev. Lett. 73, 02352 (1994)

    Article  Google Scholar 

  16. J.C. Crocker, J. Chem. Phys. 106, 072837 (1997)

    Article  ADS  Google Scholar 

  17. S.K. Sainis, V. Germain, E.R. Dufresne, Phys. Rev. Lett. 99, 018303 (2007)

    Article  ADS  Google Scholar 

  18. S.K. Sainis, V. Germain, C.O. Mejean, E.R. Dufresne, Langmuir 24, 241160 (2008)

    Google Scholar 

  19. J.C. Crocker, J.A. Matteo, A.D. Dinsmore, A.G. Yodh, Phys. Rev. Lett. 82, 214352 (1999)

    Article  ADS  Google Scholar 

  20. R.J. Owen, J.C. Crocker, R. Verma, A.G. Yodh, Phys. Rev. E 64, 011401 (2001)

    Article  ADS  Google Scholar 

  21. J.K. Dreyer, K. Berg-Sørensen, L. Oddershede, Phys. Rev. E 73, 051110 (2006)

    Article  ADS  Google Scholar 

  22. A. Levy, D. Andelman, H. Orland, Phys. Rev. Lett. 108, 227801 (2012)

    Article  ADS  Google Scholar 

  23. P.S. Grassia, E.J. Hinch, L.C. Nitsche, J. Fluid Mech. 282, 373 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  24. W.P. Wong, K. Halvorsen, Opt. Express 14, 12517 (2006)

    Article  ADS  Google Scholar 

  25. A. Morita, J. Mol. Liq. 65, 75 (1995)

    Article  Google Scholar 

  26. P.A. Jansson, Deconvolution of Images and Spectra (Academic Press, Inc., San Diego, 1997)

  27. A. Raudsepp, M.A.K. Williams, S.B. Hall, J. Mod. Opt. (2016) DOI:10.1080/09500340.2016.1199819

  28. P.M. Hansen, J.K. Dreyer, J. Ferkinghoff-Berg, L. Oddershede, J. Colloid Interface Sci. 287, 561 (2005)

    Article  Google Scholar 

  29. F. Gittes, C.F. Schmidt, Opt. Lett. 23, 7 (1998)

    Article  ADS  Google Scholar 

  30. D.R. Burnham, I. De Vlaminck, T. Henighan, C. Dekker, PLoS ONE 9, 108271 (2014)

    Article  ADS  Google Scholar 

  31. J.F. Marko, E.D. Siggia, Macromolecules 28, 8759 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Raudsepp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raudsepp, A., A.K. Williams, M. & B. Hall, S. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles. Eur. Phys. J. E 39, 70 (2016). https://doi.org/10.1140/epje/i2016-16070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16070-1

Keywords

Navigation