Skip to main content
Log in

Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We studied the spatio-temporal dynamics of a cell signal cascade with negative feedback that quantitatively emulates the regulative process that occurs in the Mitogen Activated Protein Kinase/Extracellular Regulated Kinase (MAPK/ERK) pathway. The model consists of a set of six coupled reaction-diffusion equations that describes the dynamics of the six-module pathway. In the basic module the active form of the protein transmits the signal to the next pathway’s module. As suggested by experiments, the model considers that the fifth module’s kinase down-regulates the first and third modules. The feedback parameter is defined as, \( \mu^{r}_{j}\) = k kin 5/k kin j, (j = 1, 3). We analysed the pathway’s dynamics for \( \mu^{r}_{j}\) = 0.10 , 1.0, and 10 in the kinetic regimes: i) saturation of both kinases and phosphatases, ii) saturation of the phosphatases and iii) saturation of the kinases. For a regulated pathway the Total Activated Protein Profiles (TAPPs) as a function of time develop a maximum during the transient stage in the three kinetic regimes. These maxima become higher and their positions shift to longer times downstream. This scenario also applies to the TAPP’s regulatory kinase that sums up its inhibitory action to that of the phosphatases leading to a maximum. Nevertheless, when \( \mu^{r}_{j}\) = 1.0 , the TAPPs develop two maxima, with the second maximum being almost imperceptible. These results are in qualitative agreement with experimental data obtained from NIH 3T3 mouse fibroblasts. In addition, analyses of the stationary states as a function of position indicate that in the kinetic regime i) which is of physiological interest, signal transduction occurs with a relatively large propagation length for the three values of the regulative parameter. However, for \( \mu^{r}_{j}\) = 0.10 , the sixth module concentration profile is transmitted with approximately 45% of its full value. The results obtained for \( \mu^{r}_{j}\) = 10 , indicate that the first five concentration profiles are small with a short propagation length; nonetheless, the last concentration profile, c6, attains more than 90% of its full value with a relatively large propagation length as an indication of signal transduction. Signal transduction also occurred favourably in the kinetic regimes ii) and iii), but the signal was longer-ranged in the regime ii).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Voltmat, J. Pouysseguir, Biol. Cell 93, 71 (2001)

    Article  Google Scholar 

  2. M.J. Robinson, M.H. Cobb, Curr. Opin. Cell Biol. 9, 180 (1997)

    Article  Google Scholar 

  3. L. Chang, M. Karin, Nature 410, 37 (2001)

    Article  ADS  Google Scholar 

  4. E. Nishida, Y. Gotoh, Trends Biochem. Sci. 18, 128 (1993)

    Article  Google Scholar 

  5. K. Kondoh, E. Nishida, Biochim. et Biophys. Acta Mol. Cell Res. 1773, 1227 (2007)

    Article  Google Scholar 

  6. F.A. Brightman, D.A. Fell, FEBS Lett. 482, 169 (2000)

    Article  Google Scholar 

  7. S. Yamada, S. Shiono, A. Joo, A. Yoshimura, FEBS Lett. 534, 190 (2003)

    Article  Google Scholar 

  8. B.N. Kholodenko, Nat. Rev. Mol. Cell Biol. 7, 165 (2006)

    Article  Google Scholar 

  9. C. Dong, S.B. Waters, K.H. Holt, J.E. Pessin, J. Biol. Chem. 271, 6328 (1996)

    Article  Google Scholar 

  10. R. Fritsche-Guenther, F. Witzel, A. Sieber, R. Herr, N. Schmidt, S. Braun, T. Brummer, C. Sers, N. Blüthgen, Mol. Syst. Biol. 7, 489 (2011)

    Article  Google Scholar 

  11. M.M. McKay, D.K. Morrison, Oncogene 26, 3113 (2007)

    Article  Google Scholar 

  12. S.Y. Shin, O. Rath, S.M. Choo, F. Fee, B. McFerrran, W. Kolch, K.H. Cho, J. Cell. Sci. 122, 425 (2009)

    Article  Google Scholar 

  13. Y. Kamioka, S. Yasuda, Y. Fujita, K. Aoki, M. Matsuda, J. Biol. Chem. 285, 33540 (2010)

    Article  Google Scholar 

  14. B.N. Kholodenko, O.V. Demin, G. Moehren, J.B. Hoek, J. Biol. Chem. 274, 30169 (1999)

    Article  Google Scholar 

  15. A.R. Asthagiri, D.A. Lauffenburger, Biotechnol. Prog. 17, 227 (2001)

    Article  Google Scholar 

  16. B. Schoeberl, C. Eichler-Jonsson, E.D. Gilles, G. Muller, Nat. Biotechnol. 20, 370 (2002)

    Article  Google Scholar 

  17. G. Moehren, N. Markevich, O. Demin, A. Kiyatkin, I. Goryanin, J.B. Hoek, B.N. Kholodenko, Biochemistry 41, 306 (2002)

    Article  Google Scholar 

  18. S.Y. Shvartsman, C.B. Muratov, D.A. Lauffenburger, Development 129, 2577 (2002)

    Google Scholar 

  19. H.S. Wiley, S.Y. Shvartsman, D.A. Lauffenburger, Trends Cell. Biol. 13, 43 (2003)

    Article  Google Scholar 

  20. B.N. Kholodenko, Nat. Rev. Mol. Cell Biol. 7, 165 (2010)

    Article  Google Scholar 

  21. J.J. Tyson, K.C. Chen, B. Novak, Curr. Opin. Cell Biol. 15, 221 (2003)

    Article  Google Scholar 

  22. E.R. Stadtman, P.B. Chock, Proc. Natl. Acad. Sci. U.S.A. 74, 2761 (1977)

    Article  ADS  Google Scholar 

  23. A. Goldbeter, D.E. Koshlan, Proc. Natl. Acad. Sci. U.S.A. 78, 6840 (1981)

    Article  ADS  Google Scholar 

  24. S. Hooshangi, S. Thiberge, R. Weiss, Proc. Natl. Acad. Sci. U.S.A. 102, 3581 (2005)

    Article  ADS  Google Scholar 

  25. J.E. Jr. Ferrell, Trends Biochem. Sci. 78, 288 (1997)

    Article  Google Scholar 

  26. C.Y.F. Huang, J.E. Ferrell Jr., Proc. Natl. Acad. Sci. U.S.A. 93, 10078 (1996)

    Article  ADS  Google Scholar 

  27. J.E. Ferrell Jr., Trends Biochem. Sci. 21, 460 (1996)

    Article  Google Scholar 

  28. B.N. Kholodenko, Eur. J. Biochem. 267, 1583 (2000)

    Article  Google Scholar 

  29. N.I. Markevich, J.B. Hoek, B.N. Kholodenko, J. Cell Biol. 164, 353 (2004)

    Article  Google Scholar 

  30. X. Wang, N. Hao, H.G. Dohlman, T.C. Elston, Biophys. J. 90, 1961 (2006)

    Article  ADS  Google Scholar 

  31. M. Behar, N. Hao, H.G. Dohlman, T.C. Elston, Biophys. J. 93, 806 (2007)

    Article  ADS  Google Scholar 

  32. Z. Han, T.M. Vondriska, L. Yang, W.R. MacLellan, J.N. Weiss, Z. Qu, J. Theor. Biol. 246, 755 (2007)

    Article  MathSciNet  Google Scholar 

  33. R. Heinrich, B.G. Neel, T.A. Rapoport, Mol. Cell 9, 957 (2002)

    Article  Google Scholar 

  34. M. Chaves, E.D. Sontag, R.J. Dinerstein, J. Phys. Chem. B 108, 15311 (2004)

    Article  Google Scholar 

  35. E. Sontag, M. Chaves, Automatica 42, 1987 (2006)

    Article  MathSciNet  Google Scholar 

  36. Y. Morishita, T.J. Kobayashi, K. Aihara, Biophys. J. 91, 2072 (2006)

    Article  ADS  Google Scholar 

  37. Z. Qu, T.M. Vondriska, Phys. Biol. 6, 1 (2009)

    Article  Google Scholar 

  38. J. Muñoz-García, Z. Neufeld, B.N. Kholodenko, PLOS Comput. Biol. 5, e1000330 (2009)

    Article  ADS  Google Scholar 

  39. Y. Hwang, P. Kumar, A.I. Barakat, J. Math. Biol. 69, 213 (2014)

    Article  MathSciNet  Google Scholar 

  40. C.I. Maeder, M.A. Hink, A. Kinkhabwala, R. Mayr, P.I. Bastiaens et al., Nat. Cell Biol. 9, 1319 (2007)

    Article  Google Scholar 

  41. C.G. Brown, B.N. Kholodenko, FEBS Lett. 457, 452 (1999)

    Article  Google Scholar 

  42. P. Kaláb, K. Weis, R. Heald, Science 295, 2452 (2002)

    Article  ADS  Google Scholar 

  43. P. Niethammer, P. Bastiaens, E. Karsenti, Science 303, 1862 (2004)

    Article  ADS  Google Scholar 

  44. M. Caudron, G. Bunt, P. Bastiaens, E. Karsenti, Science 309, 1373 (2005)

    Article  ADS  Google Scholar 

  45. P. Kaláb, A. Pralle, E.Y. Isacoff, R. Heald, K. Weis, Nature 440, 697 (2006)

    Article  ADS  Google Scholar 

  46. D.L. Nelson, M.M. Cox, Lehninger Principles of Biochemistry, sixth edition (W.H. Freeman and Company, 2012)

  47. A. Fujioka, K. Terai, R.E. Itoh, K. Aoki, T. Nakamura, S. Kuroda, E. Nishida, M. Matsuda, J. Biol. Chem. 281, 8917 (2006)

    Article  Google Scholar 

  48. S. Ahmed, K.G. Grant, L.E. Edwards, A. Rahman, M. Cirit, M.B. Goshe, J.M. Haugh, Mol. Syst. Biol. 10, 718 (2014)

    Article  Google Scholar 

  49. O.E. Sturm, R. Orton, J. Grindlay, M. Birtwistle, V. Vyshemirsky, D. Gilbert, M. Calder, A. Pitt, B. Kholodenko, W. Kolch, Sci. Signal. 3, ra90 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Ramírez-Santiago.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maya-Bernal, J., Ramírez-Santiago, G. Spatio-temporal dynamics of a cell signal pathway with negative feedbacks: the MAPK/ERK pathway. Eur. Phys. J. E 39, 28 (2016). https://doi.org/10.1140/epje/i2016-16028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16028-3

Keywords

Navigation