Skip to main content
Log in

Mitochondrial potential (ΔΨm changes in single rat hepatocytes: The effect of orthovanadate nanoparticles doped with rare-earth elements

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Rare-earth-based nanoparticles (NPs) are widely used as fluorescent probes for imaging in vitro and in vivo. One of the challenges that restrain NPs applications in biomedical research is their effect on subcellular structures. In this paper, the ability of lanthanide NPs to affect the cellular oxidative balance and alter the mitochondrial function was analyzed. Since size and shape mutually affect the cellular internalization and intracellular distribution of NPs, the investigations were performed with NPs of spherical (GdYVO4:Eu3+, spindle-(GdVO4: Eu3+ and rod-like (LaVO4: Eu3+ shapes. Quantitative microfluorimetry with JC-1 (5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolocarbocyanine iodide) as a mitochondrial probe was used for monitoring of the mitochondrial transmembrane potential (ΔΨ m) in single living cells. Changes in the ratio of the JC-1 probe fluorescence were used to analyze the NPs effect on ΔΨ m. The fastest suppressive effect (within 1 hour) was found for spherical NPs. Gradual lowering of ΔΨ m was observed at the exposure of cells within 24 hours for all types of NPs. Exogenous thiols were required for ΔΨ m protection. The protective role of exogenous glutathione (GSH) proves that the increase of reactive oxygen species (ROS) formation with depletion of GSH can mediate NPs toxicity. The dynamics of the shape-dependent effect can be explained by the features of NPs transportation into cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Knopp, D. Tang, R. Niessner, Anal. Chim. Acta 647, 14 (2009).

    Article  Google Scholar 

  2. X.J. Liang, C. Chen, Y. Zhao, L. Jia, P.C. Wang, Curr. Drug Metab. 9, 697 (2008).

    Article  Google Scholar 

  3. B. Fadeel, A.E. Garsia-Bennett, Adv. Drug Delivery Rev. 62, 362 (2010).

    Article  Google Scholar 

  4. M.V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, R. O'Regan, Lancet Oncol. 7, 657 (2006).

    Article  Google Scholar 

  5. N. Lewinski, V. Colvin, R. Drezek, Small 4, 26 (2008).

    Article  Google Scholar 

  6. J. Shen, L.-D. Sung, J.-D. Zhu, L.-H. Wei, H.-F. Sun, C.-H. Yan, Adv. Funct. Mater. 20, 3708 (2010).

    Article  Google Scholar 

  7. V.K. Klochkov, A.V. Grigorova, O.O. Sedyh, Yu.V. Malyukin, J. Appl. Spectrosc. 79, 726 (2012).

    Article  ADS  Google Scholar 

  8. V.K. Klochkov, A.V. Grigorova, O.O. Sedyh, Yu.V. Malyukin, Colloids Surf. A 409, 176 (2012).

    Article  Google Scholar 

  9. V.K. Klochkov, N.S. Kavok, Yu.V. Malyukin, Rep. Natl. Acad. Sci. Ukr. 10, 81 (2010).

    Google Scholar 

  10. V.K. Klochkov, N.S. Kavok, A.V. Grigorova, O.O. Sedyh, Yu.V. Malyukin, Mater. Sci. Eng. C 33, 2708 (2013).

    Article  Google Scholar 

  11. K. Unfreid, C. Albrecht, L.-O. Klotz, A. von Mikecz, S. Grether-Beck, R.P.F. Schins, Nanotoxicology 1, 52 (2007).

    Article  Google Scholar 

  12. A. El-Ansary, S. Al-Daihan, J. Toxicol. 2009, 754810 (2009) DOI:10.1155/2009/754810.

    Article  Google Scholar 

  13. L.B. Chen, Annu. Rev. Cell Biol. 4, 155 (1988).

    Article  Google Scholar 

  14. D.V. Krysko, F. Roels, L. Leybaert, K. D'Herde, J. Histochem. Cytochem. 49, 1277 (2001).

    Article  Google Scholar 

  15. I. Charles, A. Khalyfa, D.M. Kumar, R.R. Krishnamoorthy, R.S. Roque, N. Cooper, N. Agarwal, Invest. Ophthalmol. Vis. Sci. 46, 1330 (2005).

    Article  Google Scholar 

  16. F. Di Lisa, P.S. Blank, R. Colonna, G. Gambassi, H.S. Silverman, M.D. Stern, R.G. Hansford, J. Physiol. 486, 1 (1995).

    Article  Google Scholar 

  17. A. Mathur, Y. Hong, B.K. Kemp, A.A. Barrientos, J.D. Erusalimskya, Cardiovasc. Res. 46, 126 (2000).

    Article  Google Scholar 

  18. M. Reers, T.W. Smith, L.B. Chen, Biochemistry 30, 4480 (1991).

    Article  Google Scholar 

  19. M. Mancini, M. Sedghinasab, K. Knowlton, A. Tam, D. Hockenbery, B.O. Anderson, Ann. Surg. Oncol. 5, 287 (1998).

    Article  Google Scholar 

  20. J.S. Wadia, R.M. Chalmers-Redman, W.J. Ju, G.W. Carlile, J.L. Phillips, A.D. Fraser, W.G. Tatton, J. Neurosci. 18, 932 (1998).

    Google Scholar 

  21. M. Grouselle, O. Tueux, P. Dabadie, D. Georgescaud, J.P. Mazat, Biochem. J. 271, 269 (1990).

    Google Scholar 

  22. M.W. Ward, H.J. Huber, P. Weisova, H. Dussmann, D.G. Nicholls, J.H.M. Prehnl, J. Neurosci. 27, 8238 (2007).

    Article  Google Scholar 

  23. P. Ranjan, Bh. Resham, P. Sujata, B. Sujit, M. Priyabrata, M. Debabrata, Clin. Chem. 53, 2029 (2007).

    Article  Google Scholar 

  24. U. De Rossi, J. Moll, M. Spieles, G. Bach, S. Dahne, J. Kriwanek, M. Lisk, J. Prakt. Chem. 337, 203 (1995).

    Article  Google Scholar 

  25. A.Y. Petrenko, V.P. Grishuk, A.N. Sukach, A.D. Roslyakov, A.M. Belous, Biochemistry (Moscow) 54, 1952 (1989).

    Google Scholar 

  26. A.A. Ansari, M. Alam, J.P. Labis, S.A. Alrokayan, G. Shafi, T.N. Hasan, N.A. Syed, A.A. Alshatwi, J. Mater. Chem. 21, 19310 (2011).

    Article  Google Scholar 

  27. H. Schneckenburger, P. Gessler, I. Pavenstädt-Grupp, J. Histochem. Cytochem. 40, 1573 (1992).

    Article  Google Scholar 

  28. J. Vigo, J.M. Salmon, S. Lahmy, P. Viallet, Anal. Cell Pathol. 3, 145 (1991).

    Google Scholar 

  29. G. Diaz, A.M. Falchi, F. Gremo, R. Isola, A. Diana, FEBS Lett. 475, 218 (2000).

    Article  Google Scholar 

  30. E.C. Toescu, A. Verkhratsky, Pflügers Archiv. Eur. J. Physiol. 440, 941 (2000).

    Article  Google Scholar 

  31. O.I. Wagner, J. Lifshitz, P.A. Janmey, M. Linden, T.K. McIntosh, J.-F. Leterrier, J. Neurosci. 23, 9046 (2003).

    Google Scholar 

  32. D. Fischer, Y. Li, B. Ahlemeyer, J. Krieglstein, T. Kissel, Biomaterials 24, 1121 (2003).

    Article  Google Scholar 

  33. S.S. Kumari, A. Varghese, D. Muraleedharan, V.P. Menon, Indian J. Med. Res. 90, 468 (1989).

    Google Scholar 

  34. M. Mancini, B.O. Anderson, E. Caldwell, M. Sedghinasab, P.B. Paty, D.M. Hockenbery, J. Cell Biol. 138, 449 (1997).

    Article  Google Scholar 

  35. M.A. Siddiqui, H.A. Alhadlaq, J. Ahmad, A.A. Al-Khedhairy, J. Musarrat, M. Ahamed, Plos. One 8 (2013) DOI:10.1371/journal.pone.0069534.

  36. A.A. Alshatwi, P.V. Subbarayan, E. Ramesh, A.A. Al-Hazzani, M.A. Alsaif, A.A. Alwarthan, Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 30, 1 (2013).

    Article  Google Scholar 

  37. N.A. Monteiro-Riviere, A.O. Inman, L.W. Zhang, Toxicol. Appl. Pharmacol. 234, 222 (2009).

    Article  Google Scholar 

  38. T. Ochi, S. Miyaura, Toxicology 55, 69 (1989).

    Article  Google Scholar 

  39. M. Edetsberger, E. Gaubitzer, E. Valic, E. Waigmann, G. Köhler, Biochem. Biophys. Res. Commun. 332, 109 (2005).

    Article  Google Scholar 

  40. A.O. Choi, S.J. Cho, J. Desbarats, J. Lovrić, D. Maysinger, J. Nanobiotechnol. 5, 1 (2007) DOI:10.1186/1477-3155-5-1.

    Article  Google Scholar 

  41. H.W. Chen, T. Chiang, C.Y. Wang, C.K. Lii, Food Chem. Toxicol. 38, 1089 (2000).

    Article  Google Scholar 

  42. Y. Wang, W.G. Aker, H.M. Hwang, C.G. Yedjou, H. Yu, P.B. Tchounwou, Sci. Total Environ. 409, 4753 (2011).

    Article  Google Scholar 

  43. K. Ishige, D. Schubert, Y. Sagara, Free Radic. Biol. Med. 30, 433 (2001).

    Article  Google Scholar 

  44. S. Becker, J.M. Soukup, J.E. Gallagher, Toxicol. In vitro 16, 209 (2002).

    Article  Google Scholar 

  45. M.A. Aon, S. Cortassa, C. Maack, B. O'Rourke, J. Biol. Chem. 282, 21889 (2007).

    Article  Google Scholar 

  46. A. Yamamoto, R. Honma, M. Sumita, T. Hanawa, J. Biomed. Mater. Res. A. 68, 244 (2004).

    Article  Google Scholar 

  47. S. Singh, A. Kumar, Karakoti, A.S. Seal, W.T. Self, Mol. Biosyst. 6, 1813 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine A. Averchenko.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavok, N.S., Averchenko, K.A., Klochkov, V.K. et al. Mitochondrial potential (ΔΨm changes in single rat hepatocytes: The effect of orthovanadate nanoparticles doped with rare-earth elements. Eur. Phys. J. E 37, 127 (2014). https://doi.org/10.1140/epje/i2014-14127-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14127-9

Keywords

Navigation