Skip to main content
Log in

Optically driven oscillations of ellipsoidal particles. Part II: Ray-optics calculations

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We report numerical calculations on the mechanical effects of light on micrometer-sized dielectric ellipsoids immersed in water. We used a simple two-dimensional ray-optics model to compute the radiation pressure forces and torques exerted on the object as a function of position and orientation within the laser beam. Integration of the equations of motion, written in the Stokes limit, yields the particle dynamics that we investigated for different aspect ratios k . Whether the beam is collimated or focused, the results show that above a critical aspect ratio kC, the ellipsoids cannot be stably trapped on the beam axis; the particle never comes to rest and rather oscillates permanently in a back-and-forth motion involving both translation and rotation in the vicinity of the beam. Such oscillations are a direct evidence of the non-conservative character of optical forces. Conversely, stable trapping can be achieved for k < k C with the particle standing idle in a vertical position. These predictions are in very good qualitative agreement with experimental observations. The physical origin of the instability may be understood from the force and torque fields whose structures greatly depend on the ellipsoid aspect ratio and beam diameter. The oscillations arise from a non-linear coupling of the forces and torques and the torque amplitude was identified as the bifurcation control parameter. Interestingly, simulations predict that sustained oscillations can be suppressed through the use of two coaxial counterpropagating beams, which may be of interest whenever a static equilibrium is required as in basic force and torque measurements or technological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.F. Nichols, G.F. Hull, Phys. Rev. 13, 307 (1901)

    ADS  Google Scholar 

  2. P. Lebedev, Ann. Phys. 6, 433 (1901)

    Article  Google Scholar 

  3. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970)

    Article  ADS  Google Scholar 

  4. A. Ashkin et al., Opt. Lett. 11, 288 (1986)

    Article  ADS  Google Scholar 

  5. A. Ashkin Optical trapping and manipulation of neutral particles using lasers (World Scientific, London, 2006)

    Article  ADS  Google Scholar 

  6. G. Roosen, C. Imbert, Phys. Lett. A 59, 6 (1976)

    Article  ADS  Google Scholar 

  7. S. Chu, Rev. Mod. Phys. 70, 685 (1998)

    Article  ADS  Google Scholar 

  8. C. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998)

    Article  ADS  Google Scholar 

  9. Phillips, Rev. Mod. Phys. 70, 721 (1998)

    Article  ADS  Google Scholar 

  10. B.M. Mihiretie, P. Snabre, J.-C. Loudet, B. Pouligny, Eur. Phys. J. E 37, 124 (2014)

    Article  Google Scholar 

  11. B.M. Mihiretie, P. Snabre, J.-C. Loudet, B. Pouligny, EPL 100, 48005 (2012)

    Article  ADS  Google Scholar 

  12. B. Mihiretie, J.-C. Loudet, B. Pouligny, J. Quantum Spectrosc. Radiat. Transfer 126, 61 (2013)

    Article  ADS  Google Scholar 

  13. J.N. Wilking, T.G. Mason, EPL 81, 58005 (2008)

    Article  ADS  Google Scholar 

  14. A. Jonáš, P. Zemánek, Electrophoresis 29, 4813 (2008)

    Article  Google Scholar 

  15. K. Dholokia, T. Čižmár, Nat. Photon. 5, 335 (2011)

    Article  ADS  Google Scholar 

  16. P.J. Pauzauskie et al., Nat. Mater. 5, 97 (2006)

    Article  ADS  Google Scholar 

  17. A. Neves et al., Opt. Express 18, 822 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  18. Z. Cheng, P.M. Chaikin, T.G. Mason, Phys. Rev. Lett. 89, 108303 (2002)

    Article  ADS  Google Scholar 

  19. Z. Cheng, T.G. Mason, P.M. Chaikin, Phys. Rev. E 68, 051404 (2003)

    Article  ADS  Google Scholar 

  20. S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 27, 1255 (2010)

    Article  ADS  Google Scholar 

  21. Y. Cao et al., Opt. Express 20, 12987 (2012)

    Article  ADS  Google Scholar 

  22. R.C. Gauthier, J. Opt. Soc. Am. B 14, 3323 (1997)

    Article  ADS  Google Scholar 

  23. R.C. Gauthier, M. Ashman, C.P. Grover, Appl. Opt. 38, 4861 (1999)

    Article  ADS  Google Scholar 

  24. P.B. Bareil, Y. Sheng, Opt. Express 18, 26388 (2010)

    Article  ADS  Google Scholar 

  25. S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 28, 850 (2011)

    Article  ADS  Google Scholar 

  26. S.H. Simpson, S. Hanna, J. Opt. Soc. Am. A 24, 430 (2007)

    Article  ADS  Google Scholar 

  27. S.H. Simpson, S. Hanna, Phys. Rev. A 84, 053808 (2011)

    Article  ADS  Google Scholar 

  28. H. Sosa-Martínez, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. B 26, 2109 (2009)

    Article  ADS  Google Scholar 

  29. C.B. Chang et al., Opt. Express 20, 24068 (2012)

    Article  ADS  Google Scholar 

  30. A. Van der Horst et al., Opt. Express 15, 11629 (2007)

    Article  ADS  Google Scholar 

  31. O.M. Maragò et al., Nat. Nanotechno. 8, 807 (2013)

    Article  ADS  Google Scholar 

  32. A.S. Glassner An Introduction to Ray-Tracing (Morgan Kaufmann, San Francisco, 1989)

    Article  Google Scholar 

  33. J.D. Jackson Classical Electrodynamics (John Wiley & Sons Ltd., 1975)

    Article  Google Scholar 

  34. G. Gouesbet, B. Maheu, G. Grehan, J. Opt. Soc. Am. A 5, 1427 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. K.F. Ren, G. Grehan, G. Gouesbet, Opt. Commun. 108, 343 (1994)

    Article  ADS  Google Scholar 

  36. F. Xu et al., Phys. Rev. E 75, 026613 (2007)

    Article  ADS  Google Scholar 

  37. B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)

    Article  ADS  Google Scholar 

  38. P.C. Chaumet, A. Rahmani, M. Nieto-Vesperinas, Phys. Rev. Lett. 88, 123601 (2002)

    Article  ADS  Google Scholar 

  39. M.A. Yurkin, A.G. Hoekstra, J. Quantum Spectrosc. Radiat. Transfer 106, 558 (2007)

    Article  ADS  Google Scholar 

  40. D. Bonessi, K. Bonin, T. Walker, J. Opt. A: Pure Appl. Opt. 9, S228 (2007)

    Article  ADS  Google Scholar 

  41. D. Benito, S.H. Simpson, S. Hanna, Opt. Express 16, 2942 (2008)

    Article  ADS  Google Scholar 

  42. J.-Q. Qin et al., Opt. Express 17, 8407 (2009)

    Article  ADS  Google Scholar 

  43. D.A. White, J. Comput. Phys. 159, 13 (2000)

    Article  ADS  MATH  Google Scholar 

  44. J.M. Song, W.C. Chew, Micro. Opt. Tech. Lett. 10, 14 (1995)

    Article  Google Scholar 

  45. X.Q. Sheng et al., IEEE Trans. Antenn. Propag. 46, 1718 (1998)

    Article  ADS  Google Scholar 

  46. V.K. Varandan, V.V. Varandan (Editors) Acoustic, Electromagnetic and Elastic Wave Scattering: Focus on the T-matrix Approach (Pergamon, 1980)

    Article  Google Scholar 

  47. T.A. Nieminen et al., J. Opt. A: Pure Appl. Opt. 9, S196 (2007)

    Article  ADS  Google Scholar 

  48. A. Ashkin, J. Biophys. 61, 569 (1992)

    Article  Google Scholar 

  49. J.Y. Walz, D.C. Prieve, Langmuir 8, 3073 (1992)

    Article  Google Scholar 

  50. F. Xu et al., Phys. Rev. A 78, 013843 (2008)

    Article  ADS  Google Scholar 

  51. A. Hinojosa-Alvarado, J.C. Gutiérrez-Vega, J. Opt. Soc. Am. B 27, 1651 (2010)

    Article  ADS  Google Scholar 

  52. J. Happel, H. Brenner Low Reynolds Number Hydrodynamics (Kluwer, Dordrecht, 1991)

    Article  ADS  Google Scholar 

  53. Y. Han et al., Phys. Rev. E 80, 011403 (2009)

    Article  ADS  Google Scholar 

  54. W.H. Press, B.P. Flanery, S.A. Teukolsky Numerical Recipes (Cambridge University Press, 1989)

    Google Scholar 

  55. J.H. Mathews Numerical Methods (Prentice-Hall International, 1992)

    Google Scholar 

  56. R. Rosen Dynamical System Theory in Biology, Vol. 1 (Wiley-Interscience, 1970)

    ADS  Google Scholar 

  57. J.M.T. Thompson, H.B. Stewart Nonlinear Dynamics and Chaos (John Wiley & Sons, 1986)

    Article  Google Scholar 

  58. P.J. Rodrigo, V.R. Daria, J. Glückstad, J. Opt. Lett. 29, 2270 (2004)

    Article  ADS  Google Scholar 

  59. P.J. Rodrigo, I.R. Perch-Nielsen, J. Glückstad, Opt. Express 14, 5812 (2006)

    Article  ADS  Google Scholar 

  60. P. Kraikivski, B. Pouligny, R. Dimova, Rev. Sci. Instrum. 77, 113703 (2006)

    Article  ADS  Google Scholar 

  61. M.I. Angelova, B. Pouligny, Pure Appl. Opt. 2, 261 (1993)

    Article  ADS  Google Scholar 

  62. S.H. Simpson, S. Hanna, Phys. Rev. E 82, 031141 (2010)

    Article  ADS  Google Scholar 

  63. Y. Roichman et al., Phys. Rev. Lett. 101, 128301 (2008)

    Article  ADS  Google Scholar 

  64. B. Sun et al., Phys. Rev. E 80, 010401(R) (2009)

    Article  ADS  Google Scholar 

  65. G. Pesce et al., EPL 86, 38002 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. -C. Loudet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loudet, J.C., Mihiretie, B.M. & Pouligny, B. Optically driven oscillations of ellipsoidal particles. Part II: Ray-optics calculations. Eur. Phys. J. E 37, 125 (2014). https://doi.org/10.1140/epje/i2014-14125-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14125-y

Keywords

Navigation