Skip to main content
Log in

Particle alignment and clustering in sheared granular materials composed of platy particles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

By means of molecular dynamics simulations, we investigate the texture and local ordering in sheared packings composed of cohesionless platy particles. The morphology of large packings of platy particles in quasistatic equilibrium is complex due to the combined effects of local nematic ordering of the particles and anisotropic orientations of contacts between particles. We find that particle alignment is strongly enhanced by the degree of platyness and leads to the formation of face-connected clusters of exponentially decaying size. Interestingly, due to dynamics in continuous shearing, this ordering phenomenon emerges even in systems composed of particles of very low platyness differing only slightly from spherical shape. The number of clusters is an increasing function of platyness. However, at high platyness the proportion of face-face interactions is too low to allow for their percolation throughout the system.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mitchell, K. Soga, Fundamentals of Soil Behavior (Wiley, New York, 2005).

  2. J. Santamarina, Soils and Waves (Wiley & Sons, New York, 2009).

  3. A. Mirghasemi, L. Rothenburg, E. Maryas, Géotechnique 52, 209 (2002).

    Article  Google Scholar 

  4. K. Mair, J. Geophys. Res. 107, 2219 (2002).

    Article  ADS  Google Scholar 

  5. G. Cho, J. Dodds, J. Santamarina, J. Geotech. Geoenviron. Eng. 132, 591 (2006).

    Article  Google Scholar 

  6. E. Azéma, F. Radjai, R. Peyroux, G. Saussine, Phys. Rev. E 76, 011301 (2007).

    Article  ADS  Google Scholar 

  7. S.A. Galindo-Torres, F. Alonso-Marroquin, Y.C. Wang, D. Pedroso, J.D. Munoz Castano, Phys. Rev. E 79, 060301 (2009).

    Article  ADS  Google Scholar 

  8. R.-C. Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Phys. Rev. Lett. 103, 118001 (2009).

    Article  ADS  Google Scholar 

  9. T. Kanzaki, M. Acevedo, I. Zuriguel, I. Pagonabarraga, D. Maza, R.C. Hidalgo, Eur. Phys. J. E 34, 133 (2011).

    Article  Google Scholar 

  10. A. Anandarajah, Comput. Geotech. 27, 1 (2000).

    Article  Google Scholar 

  11. A. Donev, F.H. Stillinger, P.M. Chaikin, S. Torquato, Phys. Rev. Lett. 92, 255506 (2004).

    Article  ADS  Google Scholar 

  12. A. Donev, I. Cisse, D. Sachs, E. Variano, F. Stillinger, R. Connelly, S. Torquato, P. Chaikin, Science 303, 990 (2004).

    Article  ADS  Google Scholar 

  13. W. Man, A. Donev, F.-H. Stillinger, M.T. Sullivan, W.-B. Russel, D. Heager, S. Inati, S. Torquato, P.M. Chaikin, Phys. Rev. Lett. 94, 198001 (2005).

    Article  ADS  Google Scholar 

  14. I. Zuriguel, T. Mullin, Proc. R. Soc. A 464, 99 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  15. E. Azéma, F. Radjai, Phys. Rev. E 81, 051304 (2010).

    Article  ADS  Google Scholar 

  16. E. Azéma, N. Estrada, F. Radjai, Phys. Rev. E 86, 041301 (2012).

    Article  ADS  Google Scholar 

  17. CEGEO, B. Saint-Cyr, K. Szarf, C. Voivret, E. Azéma, V. Richefeu, J.-Y. Delenne, G. Combe, C. Nouguier-Lehon, P. Villard, P. Sornay, M. Chaze, F. Radjai, EPL 98, 44008 (2012).

    Article  ADS  Google Scholar 

  18. E. Azéma, F. Radjai, F. Dubois, Phys. Rev. E 87, 062203 (2013).

    Article  ADS  Google Scholar 

  19. B. Saint-Cyr, J.-Y. Delenne, C. Voivret, F. Radjai, P. Sornay, Phys. Rev. E 84, 041302 (2011).

    Article  ADS  Google Scholar 

  20. E. Azéma, F. Radjai, B. Saint-Cyr, J.-Y. Delenne, P. Sornay, Phys. Rev. E 87, 052205 (2013).

    Article  ADS  Google Scholar 

  21. E. Azéma, F. Radjai, Phys. Rev. E 85, 031303 (2012).

    Article  ADS  Google Scholar 

  22. T. Borzsonyi, R. Stannarius, Soft Matter 9, 7401 (2013).

    Article  ADS  Google Scholar 

  23. G. Lumay, N. Vandewalle, Phys. Rev. E 74, 021301 (2006).

    Article  ADS  Google Scholar 

  24. K. Anki Reddy, V. Kumaran, J. Talbot, Phys. Rev. E 80, 031304 (2009).

    Article  ADS  Google Scholar 

  25. C.S. Campbell, Phys. Fluids 23, 013306 (2011).

    Article  ADS  Google Scholar 

  26. P.W. Cleary, Powder Technol. 179, 144 (2008).

    Article  Google Scholar 

  27. T. Borzsonyi, B. Szabo, G. Toros, S. Wegner, J. Torok, E. Somfai, T. Bien, R. Stannarius, Phys. Rev. Lett. 108, 228302 (2012).

    Article  ADS  Google Scholar 

  28. A.A. Pena, R. Garcia-Rojo, H.J. Herrmann, Granular Matter 9, 279 (2007).

    Article  MATH  Google Scholar 

  29. A. Anandarajah, Eng. Geol. 47, 313 (1997).

    Article  Google Scholar 

  30. M. Yao, A. Anandarajah, J. Eng. Mech. 129, 585 (2003).

    Article  Google Scholar 

  31. M. Boton, E. Azéma, N. Estrada, F. Radjai, A. Lizcano, Phys. Rev. E 87, 032206 (2013).

    Article  ADS  Google Scholar 

  32. F. Alonso-Marroquin, EPL 83, 14001 (2008).

    Article  ADS  Google Scholar 

  33. L. Pournin, M. Weber, M. Tsukahara, J.-A. Ferrez, M. Ramaioli, T.M. Liebling, Granular Matter 7, 119 (2005).

    Article  MATH  Google Scholar 

  34. P.A. Langston, M.A. Al-Awamleh, F.Y. Fraige, B.N. Asmar, Chem. Eng. Sci. 59, 425 (2004).

    Article  Google Scholar 

  35. F. Alonso-Marroquin, Y. Wang, Granular Matter 11, 317 (2009).

    Article  MATH  Google Scholar 

  36. S.A. Galindo-Torres, D. Pedroso, D.J. Williams, L. Li, Comput. Phys. Commun. 183, 266 (2012).

    Article  ADS  Google Scholar 

  37. F. Radjai, F. Dubois, Discrete-Element Modeling of Granular Materials (John Wiley & Sons, New York, 2011).

  38. P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979).

    Article  Google Scholar 

  39. J. Ghaboussi, R. Barbosa, Int. J. Num. Anal. Methods Geomech. 14, 451 (1990).

    Article  Google Scholar 

  40. GDR MiDi, Eur. Phys. J. E 14, 341 (2004).

    Article  Google Scholar 

  41. T. Börzsönyi, B. Szabó, S. Wegner, K. Harth, J. Török, E. Somfai, T. Bien, R. Stannarius, Phys. Rev. E 86, 051304 (2012).

    Article  ADS  Google Scholar 

  42. S. Torquato, Random Heterogeneous Materials: Micro-structure and Macroscopic Properties (Springer-Verlag, New York, 2002).

  43. M. Acevedo, R.C. Hidalgo, I. Zuriguel, D. Maza, I. Pagonabarraga, Phys. Rev. E 87, 012202 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilien Azéma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boton, M., Estrada, N., Azéma, E. et al. Particle alignment and clustering in sheared granular materials composed of platy particles. Eur. Phys. J. E 37, 116 (2014). https://doi.org/10.1140/epje/i2014-14116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14116-0

Keywords

Navigation