Skip to main content
Log in

Dual fragmentation modes of the explosively dispersed granular materials

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Granular materials subjected to blast loading caused by a central explosion exhibit a distinctive dual jetting phenomenon. A large number of fine particle jets are ejected from the outer edge of the charge upon the reflection of the shock wave from the free surface, and are soon overtaken and overlapped by a second set of much thicker particle jets from the inner edge. Our numerical studies suggest that these two distinct sets of particle jets arise from a subsequent fragmentation of the outer and inner particle layers formed during shock interaction. The instability onset of the inner particle layer, which remains intact after the spallation of the outer particle layer, corresponds to the destabilizing viscous forces prevailing over the stabilizing inertial forces. The physical mechanism responsible for the spallation of the outer particle layer is accounted for by a three-phase cavitation model consisting of nucleation, unconditioned and conditioned growth of voids. The theoretically predicted fragmentation onset and fragment size are well consistent with the experimental results. Moreover, by incorporating the moisture effect into the granular material model, results of the cavitation model indicate an increased number of jets generated by saturated particles, as observed in experiments. With minor shock energy being consumed on the saturated particle compaction thanks to the remarkably low compressibility of saturated particles, the shock wave retains the steep front during propagation and subsequently produces a sharp reflection wave leading to a considerably higher strain relaxation rate in saturated particles than that in dry particles. The pressure relaxation duration prescribes the time the activated nucleation sites are allowed to communicate with each other. Consequently nucleation sites in saturated particles have more chances to survive and fully develop than those in dry particles giving rise to smaller fragments.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Zhang, D.L. Frost, P.A. Thibault, S.B. Murray, Shock Waves 10, 431 (2001).

    Article  MATH  ADS  Google Scholar 

  2. D.L. Frost, C. Ornthanalai, Z. Zarei, V. Tanguay, F. Zhang, J. App. Phys. 101, 113529 (2007).

    Article  ADS  Google Scholar 

  3. D.L. Frost, S. Goroshin, R.C. Ripley, F. Zhang, Proceedings of the 21st International Symposium of Military Aspects of Blast and Shock, Jerusalem, Israel (2010) p. 35.

  4. A. Milne, C. Parrish, I. Worland, Shock Waves 20, 41 (2010).

    Article  ADS  Google Scholar 

  5. Y. Gregoire, F. David, P. Oren, AIP Conf. Proc. 1426, 1623 (2011).

    Google Scholar 

  6. R. Ripley, L. Donahue, F. Zhang, AIP Conf. Proc. 1426, 1615 (2012).

    Article  ADS  Google Scholar 

  7. L.F. David, G. Yann, P. Oren, G. Samuel, Z. Fan, Phys. Fluids 24, 091109 (2012).

    Article  Google Scholar 

  8. K. Xue, F. Li, C. Bai, Eur. Phys. J. E. 36, 1 (2013).

    Article  Google Scholar 

  9. R.C. Ripley, F. Zhang, J. Phys: Conf. Ser. 500, 152012 (2014).

    ADS  Google Scholar 

  10. V. Rodriguez, R. Saurel, G. Jourdan, L. Houas, Phys. Rev. E 88, 063011 (2013).

    Article  ADS  Google Scholar 

  11. C. Denoual, J.M. Diani, AIP Conf. Proc. 620, 495 (2002).

    Article  ADS  Google Scholar 

  12. X. Huang, Z. Ling, L.H. Dai, Int. J. Solid Struct. 50, 1364 (2013).

    Article  Google Scholar 

  13. L. Signor, A. Dragon, G. Roy, T. De Resseguier, F. Llorca, Arch. Mech. 60, 323 (2008).

    MATH  Google Scholar 

  14. T. Rességuier, L. Signor, A. Dragon, G. Roy, Int. J. Fracture 163, 109 (2010).

    Article  MATH  Google Scholar 

  15. Y. Forterre, O. Pouliquen, Annu. Rev. Fluid Mech. 40, 1 (2008).

    Article  MathSciNet  ADS  Google Scholar 

  16. P.G. Rognon, J.-N. Roux, M. Naaim, F. Chevoir, J. Fluid Mech. 596, 21 (2008).

    Article  MATH  ADS  Google Scholar 

  17. M. Grujicic, B. Pandurangan, B.A. Cheeseman, W.N. Roy, R.R. Skaggs, Shock Vibration 14, 1 (2007).

    Article  Google Scholar 

  18. M. Grujicic, B. Pandurangan, R. Qiao, B.A. Cheeseman, W.N. Roy, R.R. Skaggs, R. Gupta, Soil Dynam. Earthquake Engin. 28, 20 (2008).

    Article  Google Scholar 

  19. D.E. Grady, in Shock Wave Science and Technology Reference Library, Vol. 3 (Springer, Berlin-Heidelberg, 2009) pp. 1–108.

  20. AUTODYN Release 12.1 User Subroutines Tutorial (ANSYS, Inc., 2009).

  21. L. Laine, A. Sandvik, Proceedings of the 4th Asia-Pacific Conference on Shock and Impact Loads on Structure (CI-Premier PTE LTD, Singapore, 2001) pp. 361–368.

  22. V.F. Nesterenko, M.A. Meyers, H.C. Chen, Acta Mater. 44, 2017 (1996).

    Article  Google Scholar 

  23. A. Dragon, H. Trumel, in Proceedings of the 5th International Symposium High Dynamic Pressure (C.F.A., Saint-Malo, France, 2003) pp. 267–283.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., Yu, Q. & Bai, C. Dual fragmentation modes of the explosively dispersed granular materials. Eur. Phys. J. E 37, 88 (2014). https://doi.org/10.1140/epje/i2014-14088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14088-y

Keywords

Navigation