Skip to main content
Log in

Unbinding transition from fluid membranes with associated polymers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We consider two neighboring fluid membranes that are associated with long flexible polymers (proteins or other macromolecules). We are interested in two physical systems consisting of i) two adjacent membranes with end-grafted (or adsorbed) polymers (system I), or ii) two membranes confining a polymer solution (system II). In addition to the pure interactions between membranes, the presence of polymers gives rise to new induced mediated interactions, which are repulsive, for system I, and attractive, for system II. In fact, repulsive induced interactions are caused by the excluded-volume forces between grafted polymers, while attractive ones, by entropy loss, due to free motion of polymers between membranes. The main goal is a quantitative study of the unbinding transition thermodynamics that is drastically affected by the associated polymers. For system I, the repulsive polymer-mediated force delays this transition that can happen at low temperature. To investigate the unbinding phenomenon, we first present an exact mathematical analysis of the total potential that is the sum of the primitive and induced potentials. This mathematical study enables us to classify the total interaction potentials, in terms of all parameters of the problem. Second, use is made of the standard variational method to calculate the first moments of the membrane separation. Special attention is paid to the determination of the unbinding temperature. In particular, we discuss its dependence on the extra parameters related to the associated polymers, which are the surface coverage and the polymer layer thickness on each membrane (for system I) or the polymer density and the gyration radius of coils (for system II). Third, we compute the disjoining pressure upon membrane separation. Finally, we emphasize that the presence of polymers may be a mechanism to delay or to accentuate the appearance of the unbinding transition between fluid membranes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lässig, R. Lipowsky, Universal Aspects of Interacting Lines and Surfaces, in Fundamental Problems in Statistical Mechanics, Vol. VIII, edited by H. van Beijeren, M.H. Ernst (Elsevier Science B.V., 1994).

  2. E. Sackmann, in The Structure and Dynamics of Membranes, edited by R. Lipowsky, E. Sackmann (Elsevier, Amsterdam, 1995) p. 213304.

  3. S. Dietrich, in Phase Transitions and Critical Phenomena, Vol. 12, edited by C. Domb, J. Lebowitz (Academic Press, 1988).

  4. E. Eisenriegler, Polymers Near Surfaces (World Scientific, 1993).

  5. M.E. Fisher, J. Chem. Soc. Faraday Trans. II 82, 1569 (1986).

    Article  Google Scholar 

  6. W. Helfrich, Z. Natureforsch. 33a, 305 (1978).

    ADS  Google Scholar 

  7. R. Lipowsky, in Handbook of Biological Physics, Vol. 1, edited by R. Lipowsky, E. Sackmann (Elsevier, Amsterdam, 1995) p. 521.

  8. W. Helfrich, Z. Natureforsch. 28c, 693 (1973).

    Google Scholar 

  9. C.R. Safinya, D. Roux, G.S. Smith, S.K. Sinha, P. Dimon, N.A. Clark, A.M. Bellocq, Phys. Rev. Lett. 57, 2718 (1986).

    Article  ADS  Google Scholar 

  10. C.R. Safinya, E.B. Sirota, D. Roux, G.S. Smith, Phys. Rev. Lett. 62, 1134 (1989).

    Article  ADS  Google Scholar 

  11. R.P. Rand, V.A. Parsegian, Biochim. Biophys. Acta 988, 351 (1989).

    Article  Google Scholar 

  12. J.N. Israelachvili, Intermolecular and Surface Forces, 2nd edition (Academic Press, London, 1991).

  13. R.R. Netz, R. Lipowsky, Phys. Rev. Lett. 71, 3596 (1993).

    Article  ADS  Google Scholar 

  14. R. Lipowsky, B. Zielinska, Phys. Rev. Lett. 62, 1572 (1989).

    Article  ADS  Google Scholar 

  15. R. Lipowsky, S. Leibler, Phys. Rev. Lett. 56, 2541 (1986).

    Article  ADS  Google Scholar 

  16. R. Lipowsky, Europhys. Lett. 7, 255 (1988).

    Article  ADS  Google Scholar 

  17. S. Grotehans, R. Lipowsky, in Dynamical Phenomena at Interfaces, Surfaces and Membranes, edited by D. Beysens, N. Boccara, G. Forgacs (Nova Science, New York, 1993) p. 267.

  18. L.J. Lis et al., Biochemistry 20, 1771 (1981).

    Article  Google Scholar 

  19. L.S. Schulman, Techniques and Applications of Path Integration (Dover, 2005).

  20. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markers, 5th edition (World Scientific, London, 2009).

  21. C. Itzykson, J.-M. Drouffe, Statistical Field Theory: 1 and 2 (Cambridge University Press, 1989).

  22. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989).

  23. T.W. Burkhardt, P. Schlottmann, J. Phys. A 26, L-501 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Asfaw, Physica A 387, 3526 (2008) and references therein.

    Article  ADS  Google Scholar 

  25. M. Manghi, N. Destainville, Langmuir 26, 4057 (2010).

    Article  Google Scholar 

  26. P.M. Morse, Phys. Rev. 34, 57 (1929).

    Article  MATH  ADS  Google Scholar 

  27. G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1950).

  28. S. Cho, H. Sun, Bull. Korean Chem. Soc. 25, 1397 (2004).

    Article  Google Scholar 

  29. An exhaustive list of experimental works can be found in ref. 11.

  30. P.B. Canham, J. Theor. Biol. 26, 61 (1970).

    Article  Google Scholar 

  31. P.-G. de Gennes, Adv. Colloid Interface Sci. 27, 189 (1987).

    Article  Google Scholar 

  32. P.-G. de Gennes, Macromolecules 14, 1637 (1981).

    Article  ADS  Google Scholar 

  33. P.-G. de Gennes, Macromolecules 15, 492 (1982).

    Article  ADS  Google Scholar 

  34. S. Alexander, J. Phys. (Paris) 38, 983 (1977).

    Article  Google Scholar 

  35. J. Klein, J. Phys.: Condens. Matter 2, 323 (1990).

    ADS  Google Scholar 

  36. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).

  37. E.A. Evans, V.A. Parsegian, Proc. Natl. Acad. Sci. U.S.A. 83, 7132 (1986).

    Article  ADS  Google Scholar 

  38. T. Bickel, M. Benhamou, H. Kaidi, Phys. Rev. E 70, 051404 (2004).

    Article  ADS  Google Scholar 

  39. H. Kaidi, T. Bickel, M. Benhamou, Europhys. Lett. 69, 15 (2005).

    Article  ADS  Google Scholar 

  40. A. Bendouch, H. Kaidi, T. Bickel, M. Benhamou, J. Stat. Phys. P01016, 1 (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benhamou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhamou, M., Kaidi, H. Unbinding transition from fluid membranes with associated polymers. Eur. Phys. J. E 36, 125 (2013). https://doi.org/10.1140/epje/i2013-13125-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13125-9

Keywords

Navigation