Skip to main content

Advertisement

Log in

Debonding energy of PDMS

A new analysis of a classic adhesion scenario

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigated the debonding energy between confined layers of a soft elastic solid (PDMS) and a circular steel indenter in a flat punch geometry. PDMS is extensively used in applications, but also a widespread model system for fundamental research. Varying systematically the pulling speed and the viscoelastic properties, notably the modulus, we determined scaling laws for the debonding energy. We showed that the debonding energy is independent of the sample thickness. Applying a new approach and separating the crack initiation and the propagation part of the force curves, we analyzed the thickness dependence more precisely and we demonstrated that the energy to propagate the crack at given average speed does not only depend on the modulus, but also on the sample thickness.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Creton, MRS Bull. 28, 434 (2003).

    Article  Google Scholar 

  2. R.E. Webber, K.R. Shull, A. Roos, C. Creton, Phys. Rev. E 68, 021805 (2003).

    Article  ADS  Google Scholar 

  3. A.J. Crosby, K.R. Shull, H. Lakrout, C. Creton, J. Appl. Phys. 88, 2956 (2000).

    Article  ADS  Google Scholar 

  4. J. Nase, A. Lindner, C. Creton, Phys. Rev. Lett. 101, 074503 (2008).

    Article  ADS  Google Scholar 

  5. K.R. Shull, Mater. Sci. Engin. R-Rep. 36, 1 (2002).

    Article  Google Scholar 

  6. D. Kaelble, J. Adhes. 37, 205 (1992).

    Article  Google Scholar 

  7. C. Verdier, G. Ravilly, J. Polym. Sci. Part B-Polym. Phys. 45, 2113 (2007).

    Article  ADS  Google Scholar 

  8. D. Maugis, M. Barquins, J. Phys. D-Appl. Phys. 11, 1989 (1978).

    Article  ADS  Google Scholar 

  9. M. Barquins, D. Maugis, J. Adhes. 13, 53 (1981).

    Article  Google Scholar 

  10. M.K. Chaudhury, G.M. Whitesides, Langmuir 7, 1013 (1991).

    Article  Google Scholar 

  11. A. Zosel, Colloid Polym. Sci. 263, 541 (1985).

    Article  Google Scholar 

  12. K.R. Shull, C. Creton, J. Polym. Sci. Part B-Polym. Phys. 42, 4023 (2004).

    Article  ADS  Google Scholar 

  13. F. Deplace, C. Carelli, S. Mariot, H. Retsos, A. Chateauminois, K. Ouzineb, C. Creton, J. Adhes. 85, 18 (2009).

    Article  Google Scholar 

  14. M. Deruelle, H. Hervet, G. Jandeau, L. Leger, J. Adhes. Sci. Technol. 12, 225 (1998).

    Article  Google Scholar 

  15. K. Shull, D. Ahn, W. Chen, C. Flanigan, A. Crosby, Macromol. Chem. Phys. 199, 489 (1998).

    Article  Google Scholar 

  16. A. Chiche, J. Dollhofer, C. Creton, Eur. Phys. J. E 17, 389 (2005).

    Article  Google Scholar 

  17. M.D. Bartlett, A.J. Crosby, Langmuir 29, 11022 (2013).

    Article  Google Scholar 

  18. A. Diethert, V. Körstgens, D. Magerl, K. Ecker, J. Perlich, S.V. Roth, P. Müller-Buschbaum, ACS Appl. Mater. Interfaces 4, 3951 (2012).

    Article  Google Scholar 

  19. M. Meitl, Z. Zhu, V. Kumar, K. Lee, X. Feng, Y. Huang, I. Adesida, R. Nuzzo, J. Rogers, Nat. Mater. 5, 33 (2006).

    Article  ADS  Google Scholar 

  20. Y. Xia, G. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998).

    Article  Google Scholar 

  21. N. Arun, A. Sharma, P.S.G. Pattader, I. Banerjee, H.M. Dixit, K.S. Narayan, Phys. Rev. Lett. 102, 254502 (2009).

    Article  ADS  Google Scholar 

  22. J. Nase, C. Creton, O. Ramos, L. Sonnenberg, T. Yamaguchi, A. Lindner, Soft Matter 6, 2685 (2010).

    Article  ADS  Google Scholar 

  23. S. Patil, A. Malasi, A. Majumder, A. Ghatak, A. Sharma, Langmuir 28, 42 (2012).

    Article  Google Scholar 

  24. E. Gutierrez, A. Groisman, PLoS ONE 6, e25534 (2011).

    Article  ADS  Google Scholar 

  25. C.S. Davis, A.J. Crosby, J. Polym. Sci. Part B-Polym. Phys. 50, 1225 (2012).

    Article  ADS  Google Scholar 

  26. C.S. Davis, D. Martina, C. Creton, A. Lindner, A.J. Crosby, Langmuir 28, 14899 (2012).

    Article  Google Scholar 

  27. M.D. Bartlett, D. Michael, B. Andrew, A.J. Crosby, Adv. Funct. Mater. 22, 4985 (2012).

    Article  Google Scholar 

  28. J.P. Gong, Soft Matter 6, 2583 (2010).

    Article  ADS  Google Scholar 

  29. G. Josse, P. Sergot, C. Creton, M. Dorget, J. Adhes. 80, 87 (2004).

    Article  Google Scholar 

  30. Dow Corning, Information about High Technology Silicone Materials (Dow Corning Corporation, 1991).

  31. D. Satas (Editor), Handbook of Pressure Sensitive Adhesive Technology, 2nd edition (Van Nostrand Reinhold, New York, 1989).

  32. S. Bhuyan, F. Tanguy, D. Martina, A. Lindner, M. Ciccotti, C. Creton, Soft Matter 9, 6515 (2013).

    Article  ADS  Google Scholar 

  33. C. Creton, H. Lakrout, J. Polym. Sci. Part B-Polym. Phys. 38, 965 (2000).

    Article  ADS  Google Scholar 

  34. F. Saulnier, T. Ondarcuhu, A. Aradian, E. Raphael, Macromolecules 37, 1067 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Nase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nase, J., Ramos, O., Creton, C. et al. Debonding energy of PDMS. Eur. Phys. J. E 36, 103 (2013). https://doi.org/10.1140/epje/i2013-13103-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13103-3

Keywords

Navigation