Skip to main content
Log in

Multicellular aggregates: a model system for tissue rheology

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Morphogenetic processes involve cell flows. The mechanical response of a tissue to active forces is linked to its effective viscosity. In order to decouple this mechanical response from the complex genetic changes occurring in a developing organism, we perform rheometry experiments on multicellular aggregates, which are good models for tissues. We observe a cell softening behavior when submitting to stresses. As our technique is very sensitive, we were able to get access to the measurement of a yield point above which a creep regime is observed obtained for strains above 12%. To explain our rheological curves we propose a model for the cytoskeleton that we represent as a dynamic network of parallel springs, which will break under stress and reattach at null strain. Such a simple model is able to reproduce most of the important behavior of cells under strain. We highlight here the importance of considering cells as complex fluids whose properties will vary with time according to the history of applied stress.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aigouy, R. Farhadifar, D.B. Staple, A. Sagner, J.C. Röper, F. Jülicher, S. Eaton, Cell 142, 773 (2010).

    Article  Google Scholar 

  2. F. Bosveld, I. Bonnet, B. Guirao, S. Tlili, Z. Wang, A. Petitalot, R. Marchand, P.L. Bardet, P. Marcq, F. Graner et al., Science 336, 724 (2012).

    Article  ADS  Google Scholar 

  3. J. Ranft, M. Basan, J. Elgeti, J.F. Joanny, J. Prost, F. Jülicher, Proc. Natl. Acad. Sci. U.S.A. 107, 20863 (2010).

    Article  ADS  Google Scholar 

  4. S. Douezan, K. Guevorkian, R. Naouar, S. Dufour, D. Cuvelier, F. Brochard-Wyart, Proc. Natl. Acad. Sci. U.S.A. 108, 7315 (2011).

    Article  ADS  Google Scholar 

  5. P. Marmottant, A. Mgharbel, J. Käfer, B. Audren, J.P. Rieu, J. Vial, B. Van Der Sanden, A. Marée, F. Graner, H. Delanoë, Proc. Natl. Acad. Sci. U.S.A. 106, 17271 (2009).

    Article  ADS  Google Scholar 

  6. M.S. Steinberg, Science 141, 401 (1963).

    Article  ADS  Google Scholar 

  7. R.A. Foty, G. Forgacs, C. Pfleger, M.S. Steinberg, Phys. Rev. Lett. 72, 2298 (1994).

    Article  ADS  Google Scholar 

  8. G. Forgacs, R.A. Foty, Y. Shafrir, M.S. Steinberg, Biophys. J. 74, 2227 (1998).

    Article  ADS  Google Scholar 

  9. T. Wakatsuki, M.S. Kolodney, G.I. Zahalak, E.L. Elson, Biophys. J. 79, 2353 (2000).

    Article  Google Scholar 

  10. T.V. Stirbat, A. Mgharbel, S. Bodennec, K. Ferri, H.C. Mertani, J.P. Rieu, H. Delanoë, PLoS ONE 8, e52554 (2013).

    Article  ADS  Google Scholar 

  11. B. Fabry, G.N. Maksym, J.P. Butler, M. Glogauer, D. Navajas, J.J. Fredberg, Phys. Rev. Lett. 87, 148102 (2001).

    Article  ADS  Google Scholar 

  12. B.D. Hoffman, G. Massiera, K.M. Van Citters, J.C. Crocker, Proc. Natl. Acad. Sci. U.S.A. 103, 10259 (2006).

    Article  ADS  Google Scholar 

  13. A. Palmer, J. Xu, S.C. Kuo, D. Wirtz, Biophys. J. 76, 1063 (1999).

    Article  Google Scholar 

  14. D. Wirtz, Annu. Rev. Biophys. 38, 301 (2009).

    Article  Google Scholar 

  15. D. Stamenović, N. Rosenblatt, M. Montoya-Zavala, B.D. Matthews, S. Hu, B. Suki, N. Wang, D.E. Ingber, Biophys. J. 93, L39 (2007).

    Article  Google Scholar 

  16. N. Wang, D.E. Ingber, Biophys. J. 66, 2181 (1994).

    Article  ADS  Google Scholar 

  17. L. Deng, N.J. Fairbank, B. Fabry, P.G. Smith, G.N. Maksym, Am. J. Physiol. Cell Physiol. 287, C440 (2004).

    Article  Google Scholar 

  18. D. Icard-Arcizet, O. Cardoso, A. Richert, S. Hénon, Biophys. J. 94, 2906 (2008).

    Article  Google Scholar 

  19. P. Fernández, P.a. Pullarkat, A. Ott, Biophysical J. 90, 3796 (2006).

    Article  ADS  Google Scholar 

  20. X. Trepat, M. Grabulosa, F. Puig, G.N. Maksym, D. Navajas, R. Farré, Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L1025 (2004).

    Article  Google Scholar 

  21. P. Kollmannsberger, C.T. Mierke, B. Fabry, Soft Matter 7, 3127 (2011).

    Article  ADS  Google Scholar 

  22. X. Trepat, L. Deng, S.S. An, D. Navajas, D.J. Tschumperlin, W.T. Gerthoffer, J.P. Butler, J.J. Fredberg, Nature 447, 592 (2007).

    Article  ADS  Google Scholar 

  23. P. Sollich, Phys. Rev. E 58, 738 (1998) 9712001v2.

    Article  ADS  Google Scholar 

  24. R. Krishnan, C.Y. Park, Y.c. Lin, J. Mead, R.T. Jaspers, X. Trepat, G. Lenormand, D. Tambe, A.V. Smolensky, A.H. Knoll et al., PloS one 4, e5486 (2009).

    Article  ADS  Google Scholar 

  25. L. Wolff, P. Fernández, K. Kroy, P. Ferna, PloS one 7, e40063 (2012).

    Article  ADS  Google Scholar 

  26. K.E. Kasza, A.C. Rowat, J. Liu, T.E. Angelini, C.P. Brangwynne, G.H. Koenderink, D.A. Weitz, Curr. Opin. Cell Biol. 19, 101 (2007).

    Article  Google Scholar 

  27. D. Robert, T.h. Nguyen, F. Gallet, C. Wilhelm, PloS one 5, e10046 (2010).

    Article  ADS  Google Scholar 

  28. A.R. Harris, L. Peter, J. Bellis, B. Baum, A.J. Kabla, G.T. Charras, Proc. Natl. Acad. Sci. U.S.A. 29, 16449 (2012).

    Article  ADS  Google Scholar 

  29. A. Nagafuchi, Y. Shirayoshi, K. Okazaki, K. Yasuda, M. Takeichi, Nature 329, 341 (1987).

    Article  ADS  Google Scholar 

  30. M. Coué, S.L. Brenner, I. Spector, E.D. Korn, FEBS Lett. 213, 316 (1987).

    Article  Google Scholar 

  31. A. Bershadsky, A. Chausovsky, E. Becker, A. Lyubimova, B. Geiger, Curr. Biol. 6, 1279 (1996).

    Article  Google Scholar 

  32. J. Xu, Y. Tseng, D. Wirtz, Journal Biol. Chem. 275, 35886 (2000).

    Article  Google Scholar 

  33. R.H. Ewoldt, a.E. Hosoi, G.H. McKinley, Integr. Comp. Biol. 49, 40 (2009).

    Article  Google Scholar 

  34. C. Semmrich, T. Storz, J. Glaser, R. Merkel, A. Bausch, K. Kroy, Proc. Natl. Acad. Sci. U.S.A. 104, 20199 (2007).

    Article  ADS  Google Scholar 

  35. C. Semmrich, R.J. Larsen, A.R. Bausch, Soft Matter 4, 1675 (2008).

    Article  ADS  Google Scholar 

  36. C.P. Broedersz, K.E. Kasza, L.M. Jawerth, S. Münster, D.a. Weitz, F.C. MacKintosh, Soft Matter 6, 4120 (2010).

    Article  ADS  Google Scholar 

  37. R.H. Ewoldt, G.H. Mckinley, Rheology Bull. 76, 4 (2007).

    Google Scholar 

  38. P. Fernández, A. Ott, Phys. Rev. Lett. 100, 2 (2008).

    Google Scholar 

  39. P. Bursac, G. Lenormand, B. Fabry, M. Oliver, D.A. Weitz, V. Viasnoff, J.P. Butler, J.J. Fredberg, Nat. Mater. 4, 557 (2005).

    Article  ADS  Google Scholar 

  40. N. Desprat, A. Richert, J. Simeon, A. Asnacios, Biophys. J. 88, 2224 (2005).

    Article  Google Scholar 

  41. D.R. Overby, B.D. Matthews, E. Alsberg, D.E. Ingber, Acta Biomater. 1, 295 (2005).

    Article  Google Scholar 

  42. P. Sollich, F. Lequeux, P. Hébraud, M.M. Cates, Phys. Rev. Lett. 78, 2020 (1997).

    Article  ADS  Google Scholar 

  43. B. Fabry, G.N. Maksym, J.P. Butler, M. Glogauer, D. Navajas, N.A. Taback, E.J. Millet, J.J. Fredberg, Phys. Rev. E. 68, 41914 (2003).

    Article  ADS  Google Scholar 

  44. K.K. Mandadapu, S. Govindjee, M.R.K. Mofrad, J. Biomech. 41, 1467 (2008).

    Article  Google Scholar 

  45. H.A. Kramers, Physica 7, 284 (1940).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. E.A. Evans, Faraday Disc. 111, 1 (1998).

    Article  ADS  Google Scholar 

  47. G.I. Bell, Science 200, 618 (1978).

    Article  ADS  Google Scholar 

  48. M. Srinivasan, S. Walcott, Phys. Rev. E 80, 046124 (2009).

    Article  ADS  Google Scholar 

  49. S. Walcott, S.X. Sun, Proc. Natl. Acad. Sci. U.S.A. 107, 7757 (2010).

    Article  ADS  Google Scholar 

  50. S.M. Fielding, M.E. Cates, P. Sollich, Soft Matter 5, 2378 (2009) arXiv:0812.3300v1.

    Article  ADS  Google Scholar 

  51. E. Ben-Isaac, Y. Park, G. Popescu, F.L.H. Brown, N.S. Gov, Y. Shokef, Phys. Rev. Lett. 106, 238103 (2011).

    Article  ADS  Google Scholar 

  52. L. Wolff, K. Kroy, Phys. Rev. E 86, 040901 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hélène Delanoë-Ayari.

Additional information

Contribution to the Topical Issue “Physical constraints of morphogenesis and evolution”, edited by Vincent Fleury, Paul François and Marie Christine Ho Ba Tho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilica Stirbat, T., Tlili, S., Houver, T. et al. Multicellular aggregates: a model system for tissue rheology. Eur. Phys. J. E 36, 84 (2013). https://doi.org/10.1140/epje/i2013-13084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13084-1

Keywords

Navigation