Skip to main content
Log in

Self-assembly of anisotropic soft particles in two dimensions

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The self-assembly of core-corona discs interacting via anisotropic potentials is investigated using Monte Carlo computer simulations. A minimal interaction potential that incorporates anisotropy in a simple way is introduced. It consists in a core-corona architecture in which the center of the core is shifted with respect to the center of the corona. Anisotropy can thus be tuned by progressively shifting the position of the core. Despite its simplicity, the system self-organizes in a rich variety of structures including stripes, triangular and rectangular lattices, cluster crystals, unusual plastic crystals, and geometrically frustrated phases. Our results indicate that the amount of anisotropy does not alter the lattice spacing and only influences the type of clustering (stripes, micelles, etc.) of the individual particles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Denton, Effective Interactions in Soft Materials, in Nanostructured Soft Matter: Experiment, Theory, Simulation and Perspectives, edited by A.V. Zvelindovsky (Springer, Dordrecht, 2007), pp. 395--436.

  2. G. Malescio, J. Phys.: Condens. Matter 19, 073101 (2007)

    Article  ADS  Google Scholar 

  3. G. Malescio, G. Pellicane, Nat. Mater. 2, 97 (2003)

    Article  ADS  Google Scholar 

  4. G. Malescio, G. Pellicane, Phys. Rev. E 70, 021202 (2004)

    Article  ADS  Google Scholar 

  5. Y. Norizoe, T. Kawakatsu, Europhys. Lett. 72, 583 (2005)

    Article  ADS  Google Scholar 

  6. P.J. Camp, Phys. Rev. E 68, 061506 (2003)

    Article  ADS  Google Scholar 

  7. M.A. Glaser et al., EPL 78, 46004 (2007)

    Article  ADS  Google Scholar 

  8. J. Fornleitner, G. Kahl, EPL 82, 18001 (2008)

    Article  ADS  Google Scholar 

  9. C.I. Mendoza, E. Batta, EPL 85, 56004 (2009)

    Article  ADS  Google Scholar 

  10. K.J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 16, 195 (2011)

    Article  Google Scholar 

  11. S. Sacanna, D.J. Pine, Curr. Opin. Colloid Interface Sci. 16, 96 (2011)

    Article  Google Scholar 

  12. A.G. Vanakaras, Langmuir 22, 88 (2006)

    Article  Google Scholar 

  13. S.C. Glotzer, M.J. Solomon, Nat. Mater. 6, 557 (2007)

    Article  Google Scholar 

  14. S.N. Fejer, D. Chakrabarti, Wales, Soft Matter 7, 3553 (2011)

    Article  ADS  Google Scholar 

  15. J.A. Veerman, D. Frenkel, Phys. Rev. A 41, 3237 (1990)

    Article  ADS  Google Scholar 

  16. R. Vácha, D. Frenkel, Biophys. J. 101, 1432 (2011)

    Article  Google Scholar 

  17. L. Hong, A. Cacciuto, E. Luijten, S. Granick, Langmuir 24, 621 (2008)

    Article  Google Scholar 

  18. S. Granick, S. Jiang, Q. Chen, Phys. Today 62, 68 (2009)

    Article  Google Scholar 

  19. S. Jiang et al., Adv. Mater. 22, 1060 (2010)

    Article  Google Scholar 

  20. Z. Zhang, S.C. Glotzer, Nano Lett. 4, 1407 (2004)

    Article  ADS  Google Scholar 

  21. E. Bianchi, J. Largo, P. Tartaglia, E. Zaccarelli, F. Sciortino, Phys. Rev. Lett. 97, 168301 (2006)

    Article  ADS  Google Scholar 

  22. E. Bianchi, R. Blaak, C.N. Likos, Phys. Chem. Chem. Phys. 13, 6397 (2011)

    Article  Google Scholar 

  23. G. Doppelbauer, E. Bianchi, G. Kahl, J. Phys.: Condens. Matter 22, 104105 (2010)

    Article  ADS  Google Scholar 

  24. A.B. Pawar, I. Kretzschmar, Macromol. Rapid Commun. 31, 150 (2010)

    Article  Google Scholar 

  25. B. Ruzicka et al., Nat. Mater. 10, 56 (2011)

    Article  ADS  Google Scholar 

  26. Q. Chen, S.C. Bae, S. Granick, Nature 469, 381 (2011)

    Article  ADS  Google Scholar 

  27. F. Romano, F. Sciortino, Soft Matter 7, 5799 (2011)

    Article  ADS  Google Scholar 

  28. F. Romano, F. Sciortino, Nat. Mater. 10, 171 (2011)

    Article  ADS  Google Scholar 

  29. J.G. Gay, B.J. Berne, J. Chem. Phys. 74, 3316 (1981)

    Article  ADS  Google Scholar 

  30. J. Ge, Y. Hu, T. Zhang, Y. Yin, J. Am. Chem. Soc. 129, 8974 (2007)

    Article  Google Scholar 

  31. D. Frenkel, B. Smit, Understanding Molecular Simulation (Academic, London, 1996)

  32. M. Singh, H. Liu, S.K. Kumar, A. Ganguly, C. Chakravarty, J. Chem. Phys. 132, 074503 (2010)

    Article  ADS  Google Scholar 

  33. P. Ziherl, R.D. Kamien, J. Phys. Chem. B 115, 7200 (2011)

    Article  Google Scholar 

  34. A.A. Mercurieva, T.M. Birshtein, Makromol. Chem. Theory Simul. 1, 205 (1992)

    Article  Google Scholar 

  35. D.A. Lenz, R. Blaak, C.N. Likos, B.M. Mladek, Phys. Rev. Lett. 109, 228301 (2012)

    Article  ADS  Google Scholar 

  36. B.M. Mladek, D. Gottwald, G. Kahl, M. Neumann, C.N. Likos, Phys. Rev. Lett. 96, 045701 (2006)

    Article  ADS  Google Scholar 

  37. Y. Han, Y. Shokef, A.M. Alsayed, P. Yunker, T.C. Lubensky, A.G. Yodh, Nature 456, 898 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado-Blanco, D., I. Mendoza, C. Self-assembly of anisotropic soft particles in two dimensions. Eur. Phys. J. E 36, 38 (2013). https://doi.org/10.1140/epje/i2013-13038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13038-7

Keywords

Navigation