Skip to main content
Log in

Aggregation on a membrane of particles undergoing active exchange with a reservoir

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We investigate the dynamics of clusters made of aggregating particles on a membrane which exchanges particles with a reservoir. Exchanges are driven by chemical reactions which supply energy to the system, leading to the establishment of a non-equilibrium steady state. We predict the distribution of cluster size at steady state. We show in particular that in a regime, that cannot exist at equilibrium, the distribution is bimodal: the membrane is mainly populated of single particles and finite-size clusters. This work is motivated by the observations that have revealed the existence of submicrometric clusters of proteins in biological membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Albert, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, The molecular biology of the cell (Garland Science, 2002)

  2. H. Lodish, A. Berck, P. Matsudaira, C.A. Kaiser, M. Krieger, M.P. Scott, Molecular Cell Biology, 5th edition (Freeman and Co., 2004)

  3. D.M. Engelman, Nature 438, 578 (2005)

    Article  ADS  Google Scholar 

  4. R. Varma, S. Mayor, Nature 394, 798 (1998)

    Article  ADS  Google Scholar 

  5. P. Sharma, R. Varma, R.C. Sarasiji, Ira, K. Gousset, G. Krishnamoorthy, M. Rao, S. Mayor, Cell 116, 577 (2004)

    Article  Google Scholar 

  6. J.J. Sieber et al., Science 317, 1072 (2007)

    Article  ADS  Google Scholar 

  7. T. Friedrichson, T.V. Kurzchalia, Nature 394, 802 (1998)

    Article  ADS  Google Scholar 

  8. H. Prior et al., J. Cell Biol. 160, 165 (2003)

    Article  Google Scholar 

  9. A. Jégou et al., Langmuir 24, 1451 (2008)

    Article  Google Scholar 

  10. K. Simons, E. Ikonen, Nature 387, 569 (1997)

    Article  ADS  Google Scholar 

  11. C. Dietrich, B. Yang, T. Fujiwara, A. Kusumi, K. Jacobson, Biophys. J. 82, 274 (2002)

    Article  Google Scholar 

  12. S. Munro, Cell 115, 377 (2003)

    Article  Google Scholar 

  13. L. Foret, Europhys. Lett. 71, 508 (2005)

    Article  ADS  Google Scholar 

  14. M. S. Turner, P. Sens, N. Socci, Phys. Rev. Lett. 95, 168301 (2005)

    Article  ADS  Google Scholar 

  15. J.F. Hancock, Nature Rev. Mol. Cell Biol. 7, 456 (2006)

    Article  Google Scholar 

  16. J. Gómez, F. Sagués, R. Reigada, Phys. Rev. E 77, 021907 (2008)

    Article  ADS  Google Scholar 

  17. J. Fan, M. Sammalkorpi, M. Haataja, Phys. Rev. Lett. 100, 178102 (2008)

    Article  ADS  Google Scholar 

  18. J. Fan, M. Sammalkorpi, M. Haataja, Phys. Rev. Lett. 104, 118101 (2010)

    Article  ADS  Google Scholar 

  19. J. Fan, M. Sammalkorpi, M. Haataja, Phys. Rev E 81, 011908 (2010)

    Article  ADS  Google Scholar 

  20. K. John, M. Bär, Phys. Rev. Lett. 95, 198101 (2005)

    Article  ADS  Google Scholar 

  21. J.D. Gunton , in Phase Transition and Critical Phenomena, edited by C. Domb, J.L. Lebowitz, Vol. 8 (Academic Press, London, 1983) p. 267

  22. K. Binder, Rep. Prog. Phys. 50, 783 (1987)

    Article  ADS  Google Scholar 

  23. K. Binder, D. Stauffer, Adv. Phys. 25, 343 (1976)

    Article  ADS  Google Scholar 

  24. O. Penrose, J.L. Lebowitz, J. Marro, M.H. Kalos, A. Sur, J. Stat. Phys. 19, 243 (1978)

    Article  ADS  Google Scholar 

  25. O. Penrose, J. Stat. Phys. 89, 305 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  26. N. Destainville, Phys. Rev. E 77, 011905 (2008)

    Article  ADS  Google Scholar 

  27. F.H. Stillinger, J. Chem. Phys. 38, 1486 (1963)

    Article  ADS  Google Scholar 

  28. There are alternative ways to partition the particles in high density clusters weakly interacting with each other. However the choice of the partition procedure is in fact not directly relevant in the theoretical framework. It becomes important when one attempts to compute exactly the cluster free energy $E(\ell)$ for which we use in this paper the simplest approximation (Eell)

  29. S. Safran, Statistical thermodynamics of surfaces, interfaces, and membranes (Westview Press Inc., 2003)

  30. N. Destainville, L. Foret, Phys. Rev. E 77, 051403 (2008)

    Article  ADS  Google Scholar 

  31. S.R. de Groot, P. Mazur, Non-equilibrium thermodynamics (Dover Publication, New York, 1984)

  32. R. Behnia, S. Munro, Nature 438, 597 (2005)

    Article  ADS  Google Scholar 

  33. M. Zerial, H. Mc Bride, Nature Rev. Cell Biol. 2, 107 (2001)

    Article  Google Scholar 

  34. B. Sonnichsen et al., J. Cell Biol. 109, 901 (2000)

    Article  Google Scholar 

  35. T.L. Hill, Free energy transduction and biochemical cycle kinetics (Dover Publication, New York, 2005)

  36. N.G. van Kampen, Stochastic processes in physics and chemistry (Elsevier, Amsterdam, 2007)

  37. J. F. Presley et al., Nature 417, 187 (2002)

    Article  ADS  Google Scholar 

  38. J. Bigay, P. Gounon, S. Robineau, B. Antonny, Nature 426, 563 (2003)

    Article  ADS  Google Scholar 

  39. K. Scheffzeck, K. Ahmadian, Cell. Mol. Life Sci. 62, 3014 (2005)

    Article  Google Scholar 

  40. N.W. Goehring et al., Biophys. J. 99, 2443 (2010)

    Article  ADS  Google Scholar 

  41. I.M. Lifshitz, V.V. Slyosov, J. Chem. Phys. 19, 35 (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Foret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foret, L. Aggregation on a membrane of particles undergoing active exchange with a reservoir. Eur. Phys. J. E 35, 12 (2012). https://doi.org/10.1140/epje/i2012-12012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2012-12012-3

Keywords

Navigation