Skip to main content
Log in

Effective line tension and contact angles between membrane domains in biphasic vesicles

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Inhomogeneities in membranes give rise to localized interactions at the interface between domains in two-component vesicles. The corresponding energy is expressed as a line tension between the two phases. In this paper we study the implications of the thickness mismatch between domains which has been experimentally reported to be of order 20-30% and the conditions under which the induced line tension can destabilize the domains in inhomogeneous vesicles. For asymmetric lipidic membranes we prove an increase of the line tension and the existence of a contact angle. Adsorption of impurities is also examined, our scope being the extension of the Canham-Helfrich model to describe elastic deformations and chemical interactions arising at microscopic scales. This mismatch effect may have important consequences for the stability of very small domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Lipowsky, E. Sackmann (Editors), Structure and Dynamics of Membranes, Handbook of Biological Physics, Vol. 1 (Elsevier, 1995)

  2. M. Bloor, M. Wilson, Phys. Rev. E. 61, 4218 (2000)

    Article  ADS  Google Scholar 

  3. U. Seifert, Adv. Phys. 46, 13 (1997)

    Article  ADS  Google Scholar 

  4. U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A. 44, 1182 (1991)

    Article  ADS  Google Scholar 

  5. T. Baumgart, S.T. Hess, W.W. Webb, Nature 425, 421 (2003)

    Article  Google Scholar 

  6. C. Dietrich, L.A. Bagatolli, Z.N. Volovyk, N.L. Thompson, M. Levi, K. Jacobson, E. Gratton, Biophys. J. 80, 1417 (2001)

    Article  Google Scholar 

  7. S. Semrau, T. Idema, L. Holtzer, T. Schmidt, C. Storm, Phys. Rev. Lett. 100, 088101 (2008)

    Article  ADS  Google Scholar 

  8. S. Semrau, T. Idema, T. Schmidt, C. Storm, Biophys. J. 96, 4906 (2009)

    Article  ADS  Google Scholar 

  9. S. Veatch, S.L. Keller, Phys. Rev. Lett. 89, 268101 (2002)

    Article  ADS  Google Scholar 

  10. C. Yuan, L.J. Johnston, Biophys. J. 79, 2768 (2000)

    Article  Google Scholar 

  11. T. Baumgart, S. Das, W.W. Webb, J.T. Jenkins, Biophys. J. 89, 1067 (2005)

    Article  Google Scholar 

  12. H.G. Döbereiner, J. Käs, D. Noppl, I. Sprenger, E. Sackmann, Biophys. J. 65, 1396 (1993)

    Article  Google Scholar 

  13. G. Staneva, M. Angelova, K. Koumanov, Chem. Phys. Lipids 129, 53 (2004)

    Article  Google Scholar 

  14. G. Staneva, M. Seigneuret, K. Koumanov, G. Trugnan, M.I. Angelova, Chem. Phys. Lipids 136, 55 (2005)

    Article  Google Scholar 

  15. K. Bacia, P. Schwille, T. Kurzchalia, Proc. Natl. Acad. Sci. U.S.A. 102, 3272 (2005)

    Article  ADS  Google Scholar 

  16. F. Jülicher, R. Lipowsky, Phys. Rev. E 53, 2670 (1996)

    Article  ADS  Google Scholar 

  17. R. Lipowsky, J. Phys. II 2, 1825 (1992)

    Article  Google Scholar 

  18. R. Lipowsky, Biophys. J. 64, 1133 (1993)

    Article  ADS  Google Scholar 

  19. F. Jülicher, R. Lipowsky, Phys. Rev. Lett. 70, 2964 (1993)

    Article  ADS  Google Scholar 

  20. J.B. Fournier, M. Ben Amar, Eur. Phys. J. E 21, 11 (2006)

    Article  Google Scholar 

  21. M.M. Kozlov, M. Winterhalter, J. Phys. II 1, 1077 (1991)

    Article  Google Scholar 

  22. M.M. Kozlov, Langmuir 80, 1541 (1992)

    Article  Google Scholar 

  23. M. Hamm, M.M. Kozlov, Eur. Phys. J. E 3, 323 (2000)

    Article  Google Scholar 

  24. M. Gandhavadi, D. Allende, A. Vidal, S.A. Simon, T.J. McIntosh, Biophys. J. 82, 1469 (2002)

    Article  Google Scholar 

  25. J.C. Lawrence, D.E. Saslowsky, J.M. Edwardson, R.M. Henderson, Biophys. J. 84, 1827 (2003)

    Article  ADS  Google Scholar 

  26. J.M. Allain, M. Ben Amar, Eur. Phys. J. E 20, 409 (2006)

    Article  Google Scholar 

  27. S.L. Das, J.T. Jenkins, J. Fluid Mech. 597, 429 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. C.M. Bender, S.A. Orzag, Advanced Mathematical Methods for Scientists and Engineers (Springer, New York, 1999)

  29. P. Biscari, G. Napoli, Biomechan. Model Mechanobiol. 6, 297 (2006)

    Article  Google Scholar 

  30. J.M. Allain, C. Storm, A. Roux, M. Ben Amar, J.F. Joanny, Phys. Rev. Lett. 93, 158104 (2004)

    Article  ADS  Google Scholar 

  31. B. Bozič, J. Majhenc, Chem. Phys. Chem. 10, 2862 (2009)

    Article  Google Scholar 

  32. J.M. Allain, M. Ben Amar, Physica A 337, 531 (2004)

    Article  ADS  Google Scholar 

  33. S. Leibler, J. Phys. (Paris) 47, 507 (1986)

    Article  Google Scholar 

  34. R. Capovilla, J. Guven, J. Phys. A: Math. Gen. 365, 6233 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  35. M.D. Carmo, Differential Geometry of Curves and Surfaces (Prentice-Hall, Englewood Cliffs, NJ, 1976)

  36. E. Kreyszig, Differential Geometry (Dover, Mineola, NY, 1991)

  37. M. Deserno, M.M. Müller, J. Guven, Phys. Rev. E 76, 11605 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Trejo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trejo, M., Ben Amar, M. Effective line tension and contact angles between membrane domains in biphasic vesicles. Eur. Phys. J. E 34, 9 (2011). https://doi.org/10.1140/epje/i2011-11008-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11008-9

Keywords

Navigation