Skip to main content
Log in

Computer simulations of the growth of synthetic peptide fibres

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a coarse-grained computer model designed to study the growth of fibres in a synthetic self-assembling peptide system. The system consists of two 28 residue \( \alpha\) -helical sequences, denoted AB and CD, in which the interactions between the half peptides, A, B, C and D, may be tuned individually to promote different types of growth behaviour. In the model, AB and CD are represented by double ended rods, with interaction sites distributed along their lengths. Monte Carlo simulations are performed to follow fibre growth. It is found that lateral and longitudinal growth of the fibre are governed by different mechanisms --the former is diffusion limited with a very small activation energy for the addition of units, whereas the latter occurs via a process of secondary nucleation at the fibre ends. As a result, longitudinal growth generally proceeds more slowly than lateral growth. Furthermore, it is shown that the aspect ratio of the growing fibre may be controlled by adjusting the temperature and the relative strengths of the interactions. The predictions of the model are discussed in the context of published data from real peptide systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hosseinkhani, M. Hosseinkhani, H. Kobayashi, Biomed. Mat. 1, 8 (2006)

    Article  Google Scholar 

  2. Y.R. Yoon, Y.B. Lim, E. Lee, M. Lee, Chem. Commun. 16, 1892 (2080)

    Google Scholar 

  3. J. Guo, H. Su, Y. Zeng, Y.X. Liang, W.M. Wong, R.G. Ellis-Behnke, K.F. So, W. Wu, Nanomed.-Nanotechnol. 3, 311 (2007)

    Article  Google Scholar 

  4. W.F. Xue, S.W. Homans, S.E. Radford, Proc. Natl. Acad. Sci. U.S.A. 105, 8926 (2008)

    Article  ADS  Google Scholar 

  5. R. Pellarin, E. Guarnera, A. Caflisch, J. Mol. Biol. 374, 917 (2007)

    Article  Google Scholar 

  6. J.D. Hartgerink, E. Beniash, S.I. Stupp, Science 294, 1684 (2001)

    Article  ADS  Google Scholar 

  7. S. Tsonchev, K.L. Niece, G.C. Schatz, M.A. Ratner, S.I. Stupp, J. Phys. Chem. B 112, 441 (2008)

    Article  Google Scholar 

  8. Y.S. Velichko, S.I. Stupp, M.O. de la Cruz, J. Phys. Chem. B 112, 2326 (2008)

    Article  Google Scholar 

  9. R.Y. Chen, L.Y. Wu, J.M. Liao, C.L. Chen, J. Chin. Chem. Soc. 54, 861 (2007)

    Google Scholar 

  10. S. Auer, C.M. Dobson, M. Vendruscolo, A. Maritan, Phys. Rev. Lett. 101, 258101 (2008)

    Article  ADS  Google Scholar 

  11. A. Aggeli, I.A. Nyrkova, M. Bell, R. Harding, L. Carrick, T.C.B. McLeish, A.N. Semenov, N. Boden, Proc. Natl. Acad. Sci. U.S.A. 98, 11857 (2001)

    Article  ADS  Google Scholar 

  12. M.J. Pandya, G.M. Spooner, M. Sunde, J.R. Thorpe, A. Rodger, D.N. Woolfson, Biochemistry 30, 8728 (2000)

    Article  Google Scholar 

  13. A.M. Smith, S.F.A. Acquah, N. Bone, H.W. Kroto, M.G. Ryadnov, M.S.P. Stevens, D.R.M. Walton, D.N. Woolfson, Angew. Chem. Int. Ed. 44, 325 (2005)

    Article  Google Scholar 

  14. A.M. Smith, E.F. Banwell, W.R. Edwards, M.J. Pandya, D.N. Woolfson, Adv. Funct. Mater. 16, 1022 (2006)

    Article  Google Scholar 

  15. D. Papapostolou, A.M. Smith, E.D.T. Atkins, S.J. Oliver, M.G. Ryadnov, L.C. Serpell, D.N. Woolfson, Proc. Natl. Acad. Sci. U.S.A. 104, 10853 (2007)

    Article  ADS  Google Scholar 

  16. J. Walshaw, D.N. Woolfson, J. Mol. Biol. 307, 1427 (2001)

    Article  Google Scholar 

  17. E.H.C. Bromley, K.J. Channon, P.J.S. King, Z.N. Mahmoud, E.F. Banwell, M.F. Butler, M.P. Crump, T.R. Dafforn, M.R. Hicks, J.D. Hirst et al., Biophys. J. 98, 1668 (2010)

    Article  ADS  Google Scholar 

  18. A. Irbaeck, S. Mitternacht, Proteins 71, 207 (2008)

    Article  Google Scholar 

  19. J.H. Meinke, U.H.E. Hansmann, J. Chem. Phys. 126, 014706 (2007)

    Article  ADS  Google Scholar 

  20. J. Mondal, B.J. Sung, A. Yethiraj, J. Phys. Chem. B 113, 9379 (2009)

    Article  Google Scholar 

  21. S. Tsonchev, G. Schatz, M. Ratner, J. Phys. Chem. B 108, 8817 (2004)

    Article  Google Scholar 

  22. H. Müller-Krumbhaar, in Monte Carlo Methods in Statistical Physics, edited by K. Binder, 2nd edition (Springer-Verlag, Berlin, 1986) pp. 261--299

  23. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  24. J. Yao, R.A. Greenkorn, K.C. Chao, Mol. Phys. 46, 587 (1982)

    Article  ADS  Google Scholar 

  25. H.H. Rugh, Phys. Rev. Lett. 78, 772 (1997)

    Article  ADS  Google Scholar 

  26. B.D. Butler, O. Ayton, O.G. Jepps, D.J. Evans, J. Chem. Phys. 109, 6519 (1998)

    Article  ADS  Google Scholar 

  27. B. Widom, J. Chem. Phys. 39, 2808 (1963)

    Article  ADS  Google Scholar 

  28. P.J.S. King, unpublished data (2010)

  29. T. Pradell, D. Crespo, N. Clavaguera, M.T. Clavaguera-Mora, J. Phys.: Condens. Matter 10, 3833 (1998)

    Article  ADS  Google Scholar 

  30. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys (Van Nostrand Reinhold, Wokingham, England, 1981) p. 290

  31. U.W. Gedde, Polymer Physics (Chapman & Hall, London, 1996) pp. 144--145

  32. H. Maeda, Y. Maeda, Phys. Rev. Lett. 90, 018303 (2003)

    Article  ADS  Google Scholar 

  33. T. Schilling, D. Frenkel, Phys. Rev. Lett. 92, 085505 (2004)

    Article  ADS  Google Scholar 

  34. H. Fazli, R. Golestanian, Phys. Rev. E 76, 041801 (2007)

    Article  ADS  Google Scholar 

  35. G.H. Lai, R. Coridan, O.V. Zribi, R. Golestanian, G.C.L. Wong, Phys. Rev. Lett. 98, 187802 (2007)

    Article  ADS  Google Scholar 

  36. M. Sayar, C. Holm, EPL 77, 16001 (2007)

    Article  ADS  Google Scholar 

  37. M. Sayar, C. Holm, Phys. Rev. E 82, 031901 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stedall, T.P., Butler, M.F., Woolfson, D.N. et al. Computer simulations of the growth of synthetic peptide fibres. Eur. Phys. J. E 34, 5 (2011). https://doi.org/10.1140/epje/i2011-11005-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11005-0

Keywords

Navigation