Skip to main content
Log in

Hydrodynamic interaction between two trapped swimming model micro-organisms

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present a theoretical study of the behaviour of two active particles under the action of harmonic traps kept at a fixed distance away from each other. We classify the steady configurations the squirmers develop as a function of their self-propelling velocity and the active stresses the swimmers induce around them. We have further analyzed the stability of such configurations, and have found that the ratio between their self-propelling velocity and the apolar flow generated through active stresses determines whether collinear parallel squirmers or perpendicularly swimming particles moving away from each other are stable. Therefore, there is a close connection between the stable configurations and the active mechanisms leading to the particle self-propulsion. The trap potential does not affect the stability of the configurations; it only modifies some of their relevant time scales. We have also observed the development of characteristic frequencies which should be observable. Finally, we show that the development of the hydrodynamic flows induced by the active particles may be relevant even when its time scale orders of magnitude smaller than the other present characteristic time scales and may destabilize the stable configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Purcell, Am. J. Phys. 45, 3 (1977)

    Article  ADS  Google Scholar 

  2. D. Bray, Cell Movements: From Molecules to Motility (Garland, New York, 2001)

  3. M. Leoni, J. Kotar, B. Bassetti, P. Cicuta, M. Cosentino Lagomarsino, Soft Matter 5, 472 (2009)

    Article  Google Scholar 

  4. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)

    Article  ADS  Google Scholar 

  5. E. Lauga, Phys. Rev. Lett. 103, 088101 (2009)

    Article  ADS  Google Scholar 

  6. W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.S. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

    Article  Google Scholar 

  7. P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sague, Phys. Rev. Lett. 101, 218304 (2009)

    Article  ADS  Google Scholar 

  8. P. Tierno, O. Güell, F. Sague, Phys. Rev. E 81, 011402 (2010)

    Article  ADS  Google Scholar 

  9. G.P. Alexander, C.M. Pooley, J.M. Yeomans, Phys. Rev. E 78, 045302 (2008)

    Article  ADS  Google Scholar 

  10. P.T. Underhill, J.P. Herna, Phys. Rev. Lett. 100, 248101 (2008)

    Article  ADS  Google Scholar 

  11. I. Llopis, I. Pagonabarraga, Europhys. Lett. 75, 999 (2006)

    Article  ADS  Google Scholar 

  12. I. Llopis, I. Pagonabarraga, Eur. J. Phys. E 26, 103 (2008)

    Article  Google Scholar 

  13. X. Wu, A. Libchaber, Phys. Rev. Lett. 84, 3017 (2000)

    Article  ADS  Google Scholar 

  14. Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)

    Article  ADS  Google Scholar 

  15. T.B. Liverpool, M.C. Marchetti, Phys. Rev. Lett. 97, 268101 (2006)

    Article  ADS  Google Scholar 

  16. D. Marenduzzo, E. Orlandini, Soft Matter 6, 774 (2010)

    Article  Google Scholar 

  17. D. Marenduzzo, E. Orlandini, M.E. Cates, J.M. Yeomans, Phys. Rev. E 76, 031921 (2007)

    Article  ADS  Google Scholar 

  18. S. Ramachandran, P.B.S. Kumar, I. Pagonabarraga, Eur. Phys. J. E 20, 151 (2006)

    Article  Google Scholar 

  19. G.I. Taylor, Proc. R. Soc. London, Ser. A 209, 447 (1951)

    Article  MATH  ADS  Google Scholar 

  20. G.I. Taylor, Proc. R. Soc. London, Ser. A 211, 225 (1952)

    Article  MATH  ADS  Google Scholar 

  21. A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)

    Article  ADS  Google Scholar 

  22. C.M. Pooley, G.P. Alexander, J.M. Yeomans, Phys. Rev. Lett. 99, 228103 (2007)

    Article  ADS  Google Scholar 

  23. M.J. Lighthill, Commun. Pure Appl. Math. 5, 109 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  24. J.R. Blake, J. Fluid Mech. 46, 199 (1971)

    Article  MATH  ADS  Google Scholar 

  25. T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. I. Llopis, I. Pagonabarraga, J. Non-Newtonian Fluid Mech. 165, 946 (2010)

    Article  MATH  Google Scholar 

  27. T. Ishikawa, T.J. Pedley, Phys. Rev. Lett. 100, 088103 (2008)

    Article  ADS  Google Scholar 

  28. P. Bartlett, S.I. Henderson, S.J. Mitchell, Philos. Trans. R. Soc. London, Ser. A 359, 883 (2001)

    Article  ADS  Google Scholar 

  29. S. Chattopadhyay et al., Proc. Natl. Acad. Sci. U.S.A. 103, 13712 (2006)

    Article  ADS  Google Scholar 

  30. A.D. Rowe et al., J. Mod. Opt. 50, 1539 (2003)

    ADS  Google Scholar 

  31. G.V. Soni, G. Ananthakrishna, G.V. Shivashankar, Appl. Phys. Lett. 85, 2414 (2004)

    Article  ADS  Google Scholar 

  32. K. Maeda, Y. Imae, J. Shioi, F. Oosawaj, J. Bacteriol. 127, 1039 (1976)

    Google Scholar 

  33. G.W. Ordal, J. Bacteriol. 126, 706 (1976)

    Google Scholar 

  34. J. Tailleur, M.E. Cates, EPL 86, 60002 (2009)

    Article  ADS  Google Scholar 

  35. S. Kim, S.J. Karrila, Microhydrodynamics. Principles and Selected Applications (Dover, Mineola, 1991)

  36. R.M. Simmons, J.T. Finer, S. Chu, J.A. Spudich, Biol. J. 70, 1813 (1996)

    Google Scholar 

  37. K.C. Neuman, A. Nagy, Nature 5, 6 (2008)

    Google Scholar 

  38. Keqin Gu, V.L. Kharitonov, Jie Chen, Stability of Time-Delay Systems (Birkhäuser, Boston, 2003)

  39. From the first-order dynamic system $\upd \mathbf{x}/\upd t = \mathbf{A} \cdot \mathbf{x}(t) + \mathbf{B} \cdot \mathbf{x}(t - \tau_d)$ we arrive at the characteristic equation $\Det (\mathbf{A} + e^{-\lambda \tau_d}\mathbf{B} - \lambda\mathbf{1}) = 0$ from which we can derive the eigenvalues $\lambda$

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matas Navarro, R., Pagonabarraga, I. Hydrodynamic interaction between two trapped swimming model micro-organisms. Eur. Phys. J. E 33, 27–39 (2010). https://doi.org/10.1140/epje/i2010-10654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10654-7

Keywords

Navigation