Skip to main content
Log in

Plasticity and dynamical heterogeneity in driven glassy materials

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Many amorphous glassy materials exhibit complex spatio-temporal mechanical response and rheology, characterized by an intermittent stress strain response and a fluctuating velocity profile. Under quasistatic and athermal deformation protocols this heterogeneous plastic flow was shown to be composed of plastic events of various sizes, ranging from local quadrupolar plastic rearrangements to system spanning shear bands. In this paper, through numerical study of a 2D Lennard-Jones amorphous solid, we generalize the study of the heterogeneous dynamics of glassy materials to the finite shear rate ( \( \dot{{\gamma}}\) \( \neq\) 0 and temperature case (T \( \neq\) 0 . In practice, we choose an effectively athermal limit (T ∼ 0 and focus on the influence of shear rate on the rheology of the glass. In line with previous works we find that the model Lennard-Jones glass follows the rheological behavior of a yield stress fluid with a Herschel-Bulkley response of the form, \( \sigma\) = \( \sigma_{{Y}}^{}\) + c 1 \( \dot{{\gamma}}^{{\beta}}_{}\) . The global mechanical response obtained through the use of Molecular Dynamics is shown to converge in the limit \( \dot{{\gamma}}\) \( \rightarrow\) 0 to the quasistatic limit obtained with an energy minimization protocol. The detailed analysis of the plastic deformation at different shear rates shows that the glass follows different flow regimes. At sufficiently low shear rates the mechanical response reaches a shear-rate-independent regime that exhibits all the characteristics of the quasistatic response (finite-size effects, cascades of plastic rearrangements, yield stress, ...). At intermediate shear rates the rheological properties are determined by the externally applied shear rate and the response deviates from the quasistatic limit. Finally at higher shear the system reaches a shear-rate-independent homogeneous regime. The existence of these three regimes is also confirmed by the detailed analysis of the atomic motion. The computation of the four-point correlation function shows that the transition from the shear-rate-dominated to the quasistatic regime is accompanied by the growth of a dynamical cooperativity length scale \( \xi\) that is shown to diverge with shear rate as \( \xi\) \( \propto\) \( \dot{{\gamma}}^{{-\nu}}_{}\) , with \( \nu\) ∼ 0.2 -0.3. This scaling is compared with the prediction of a simple model that assumes the diffusive propagation of plastic events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Sethna, K.A. Dahmen, C.R. Myers, Nature 410, 242 (2001)

    Article  ADS  Google Scholar 

  2. W. Losert, L. Bocquet, T.C. Lubensky, J.P. Gollub, Phys. Rev. Lett. 85, 1428 (2000)

    Article  ADS  Google Scholar 

  3. F. Da Cruz, F. Chevoir, D. Bonn, P. Coussot, Phys. Rev. E 66, 051305 (2002)

    Article  ADS  Google Scholar 

  4. G. Debrégeas, H. Tabuteau, J.M. di Meglio, Phys. Rev. Lett. 87, 178305 (2001)

    Article  ADS  Google Scholar 

  5. J. Lauridsen, G. Chanan, M. Dennin, Phys. Rev. Lett. 93, 018303 (2004)

    Article  ADS  Google Scholar 

  6. P. Coussot, Q.D. Nguyen, H.T. Huynh, D. Bonn, Phys. Rev. Lett. 88, 175501 (2002)

    Article  ADS  Google Scholar 

  7. J.B. Salmon, A. Colin, S. Manneville, F. Molino, Phys. Rev. Lett. 90, 228303 (2003)

    Article  ADS  Google Scholar 

  8. N.P. Bailey, J. Schiøtz, A. Lemaî tre, K.W. Jacobsen, Phys. Rev. Lett. 98, 095501 (2007)

    Article  ADS  Google Scholar 

  9. S. Xie, E.P. George, Acta. Mater. 56, 5202 (2008)

    Article  Google Scholar 

  10. J. Lu, K. Ravi-Chandar, Int. J. Solids Struct. 36, 391 (1999)

    Article  MATH  Google Scholar 

  11. F. Da Cruz, Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (2004)

  12. A. Kabla, G. Debrégeas, Phys. Rev. Lett. 90, 258303 (2003)

    Article  ADS  Google Scholar 

  13. A. Kabla, G. Debregeas, J. Fluid Mech. 587, 23 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  14. A. Kabla, J. Scheibert, G. Debregeas, J. Fluid Mech. 587, 45 (2007)

    MATH  MathSciNet  ADS  Google Scholar 

  15. J. Lauridsen, M. Twardos, M. Dennin, Phys. Rev. Lett. 89, 098303 (2002)

    Article  ADS  Google Scholar 

  16. F. Varnik, L. Bocquert, J.L. Barrat, J. Chem. Phys. 120, 2788 (2004)

    Article  ADS  Google Scholar 

  17. F. Varnik, L. Bocquet, J.L. Barrat, L. Berthier, Phys. Rev. Lett. 90, 095702 (2003)

    Article  ADS  Google Scholar 

  18. Y. Shi, M.L. Falk, Phys. Rev. Lett. 95, 095502 (2005)

    Article  ADS  Google Scholar 

  19. Y. Shi, M.L. Falk, Appl. Phys. Lett. 86, 011914 (2005)

    Article  ADS  Google Scholar 

  20. A. Tanguy, F. Léonforte, J.L. Barrat, Eur. Phys. J. E 20, 355 (2006)

    Article  Google Scholar 

  21. N. Xu, C.S. O'Hern, L. Kondic, Phys. Rev. Lett. 94, 016001 (2005)

    Article  ADS  Google Scholar 

  22. N. Xu, C.S. O'Hern, L. Kondic, Phys. Rev. E 72, 041504 (2005)

    Article  ADS  Google Scholar 

  23. N. Xu, C.S. O'Hern, Phys. Rev. E 73, 061303 (2006)

    Article  ADS  Google Scholar 

  24. H. Shiba, A. Onuki, Phys. Rev. E 81, 051501 (2010)

    Article  ADS  Google Scholar 

  25. F. Delogu, Phys. Rev. Lett. 100, 255901 (2008)

    Article  ADS  Google Scholar 

  26. F. Delogu, Phys. Rev. Lett. 100, 075901 (2008)

    Article  ADS  Google Scholar 

  27. F. Delogu, Phys. Rev. B 77, 174104 (2008)

    Article  ADS  Google Scholar 

  28. N.P. Bailey, J. Schiøtz, K.W. Jacobsen, Mater. Sci. Eng. A 387-389, 996 (2004)

    Article  Google Scholar 

  29. M. Dennin, Phys. Rev. E 70, 041406 (2004)

    Article  ADS  Google Scholar 

  30. R. Besseling, E.R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007)

    Article  ADS  Google Scholar 

  31. D.W. Howell, R.P. Behringer, C.T. Veje, Chaos 9, 559 (1999)

    Article  MATH  ADS  Google Scholar 

  32. S. Tewari, D. Schiemann, D.J. Durian, C.M. Knobler, S.A. Langer, A.J. Liu, Phys. Rev. E 60, 4385 (1999)

    Article  ADS  Google Scholar 

  33. T. Majmudar, R. Behringer, Nature 435, 1079 (2005)

    Article  ADS  Google Scholar 

  34. E. Kolb, J. Cviklinski, J. Lanuza, P. Claudin, E. Clement, Phys. Rev. E 69, 031306 (2004)

    Article  ADS  Google Scholar 

  35. M.L. Falk, J.S. Langer, Phys. Rev. E 57, 7192 (1998)

    Article  ADS  Google Scholar 

  36. P. Sollich, F. Lequeux, P. Hébraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)

    Article  ADS  Google Scholar 

  37. K. Chen, P. Bak, S.P. Obukhov, Phys. Rev. A 43, 625 (1991)

    Article  ADS  Google Scholar 

  38. C. Maloney, A. Lemaî tre, Phys. Rev. Lett. 93, 016001 (2004)

    Article  ADS  Google Scholar 

  39. C.E. Maloney, A. Lemaî tre, Phys. Rev. E 74, 016118 (2006)

    Article  ADS  Google Scholar 

  40. M. Tsamados, A. Tanguy, C. Goldenberg, J.L. Barrat, Phys. Rev. E 80, 026112 (2009)

    Article  ADS  Google Scholar 

  41. M. Tsamados, A. Tanguy, F. Léonforte, J.L. Barrat, Eur. Phys. J. E 26, 283 (2008)

    Article  Google Scholar 

  42. F. Léonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. B 70, 014203 (2004)

    Article  ADS  Google Scholar 

  43. F. Léonforte, R. Boissière, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. B 72, 224206 (2005)

    Article  ADS  Google Scholar 

  44. F. Léonforte, A. Tanguy, J.P. Wittmer, J.L. Barrat, Phys. Rev. Lett. 97, 55510 (2006)

    Article  Google Scholar 

  45. J.D. Eshelby, Proc. R. Soc. London, Ser. A 241, 376 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. G. Picard, Ph.D. thesis, Université Paris 7 - Denis Diderot (2004)

  47. C. Toninelli, M. Wyart, L. Berthier, G. Biroli, J.P. Bouchaud, Phys. Rev. E 71, 041505 (2005)

    Article  ADS  Google Scholar 

  48. F. Lechenault, O. Dauchot, G. Biroli, J.P. Bouchaud, EPL 83, 46003 (2008)

    Article  ADS  Google Scholar 

  49. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  MATH  ADS  Google Scholar 

  50. G. He, M.O. Robbins, Phys. Rev. B 64, 035413 (2001)

    Article  ADS  Google Scholar 

  51. F. Varnik, O. Henrich, Phys. Rev. B 73, 174209 (2006)

    Article  ADS  Google Scholar 

  52. A. Lemaî tre, C. Caroli, Phys. Rev. Lett. 103, 65501 (2009)

    Article  Google Scholar 

  53. G. Picard, A. Ajdari, F. Lequeux, L. Bocquet, Phys. Rev. E 71, 010501 (2005)

    Article  ADS  Google Scholar 

  54. C. Dalle-Ferrier, C. Thibierge, C. Alba-Simionesco, L. Berthier, G. Biroli, J.P. Bouchaud, F. Ladieu, D. L'ôte, G. Tarjus, Phys. Rev. E 76, 041510 (2007)

    Article  ADS  Google Scholar 

  55. D.J. Ashton, J.P. Garrahan, arXiv:0808.2412 (2008)

  56. F. Ritort, P. Sollich, Adv. Phys. 52, 219 (2003)

    Article  ADS  Google Scholar 

  57. M.E. Möbius, G. Katgert, M. van Hecke, arXiv:0811.0534v2 (2009)

  58. F. Varnik, Habilitationsschrift (2006)

  59. L. Berthier, J. Phys.: Condens. Matter 15, S933 (2003)

    Article  ADS  Google Scholar 

  60. M. Fuchs, M.E. Cates, Phys. Rev. Lett. 89, 248304 (2002)

    Article  ADS  Google Scholar 

  61. A. Lemaî tre, C. Caroli, Phys. Rev. E 76, 36104 (2007)

    Article  Google Scholar 

  62. C.E. Maloney, M.O. Robbins, J. Phys.: Condens. Matter 20, 244128 (2008)

    Article  ADS  Google Scholar 

  63. I. Ono, S. Tewari, S.A. Langer, A.J. Andrea, J. Liu, Phys. Rev. E 67, 061503 (2003)

    Article  ADS  Google Scholar 

  64. L. Bocquet, A. Colin, A. Ajdari, Phys. Rev. Lett. 103, 36001 (2009)

    Article  ADS  Google Scholar 

  65. J.C. Baret, D. Vandembroucq, S. Roux, Phys. Rev. Lett. 89, 195506 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Tsamados.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsamados, M. Plasticity and dynamical heterogeneity in driven glassy materials. Eur. Phys. J. E 32, 165–181 (2010). https://doi.org/10.1140/epje/i2010-10609-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10609-0

Keywords

Navigation