Skip to main content
Log in

Granular medium impacted by a projectile: Experiment and model

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a minimal discrete model for the propagation of energy through a 3D granular medium impacted by a particulate projectile. In this model, energy is transferred from grain to grain via binary collision events. This description can be successfully applied to the analysis of the collision process of a single spherical particle (of diameter donto a half space of granular medium composed of similarly sized particles. The model reproduces remarkably well the experimental observations. Besides, the present model provides a clear picture of the mechanism of energy propagation. A continuum version of the model, where the energy propagation from bead to bead is characterized by a diffusion equation, is derived. The diffusion coefficient is found to be proportional to the ratio of d2 to the characteristic collision time \( \tau_{c}^{}\) . The numerical value of the coefficient of proportionality is essentially governed by the geometry of the packing. This paper constitutes an extension of a previously published letter (J. Crassous, D. Beladjine, A. Valance, Phys. Rev. Lett. 99, 248001 (2007)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Walsh, K.E. Holloway, P. Habdas, J.R. Bruyn, Phys. Rev. Lett. 91, 104301 (2003).

    Article  ADS  Google Scholar 

  2. J.S. Uehara, R.P. Ojha, M.A. Ambroso, D.J. Durian, Phys. Rev. Lett. 91, 194301 (2003).

    Article  ADS  Google Scholar 

  3. G. Wurm, G. Paraskov, O. Krauss, Phys. Rev. E 71, 021304 (2005).

    Article  ADS  Google Scholar 

  4. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Chapmann and Hall, Methuen, London, 1941).

    Google Scholar 

  5. R.S. Anderson, M. Sorensen, B.B. Willets, Act. Mech. (Suppl.) 1, 1 (1991).

    Google Scholar 

  6. B.B. Willets, M.A. Rice, Act. Mech. 63, 255 (1986).

    Article  Google Scholar 

  7. B.B. Willets, M.A. Rice, Earth Surf. Proc. Land Forms 14, 719 (1989).

    Article  Google Scholar 

  8. A. Rice, B.B. Willetts, I.K. McEwan, Sedimentol. 42, 695 (1995).

    Article  ADS  Google Scholar 

  9. S. Mitha, M.Q. Tran, B.T. Werner, P.K. Haff, Act. Mech. 63, 267 (1986).

    Article  Google Scholar 

  10. B.T. Werner, PhD Thesis, California Institute of Technology (1987).

  11. F. Rioual, A. Valance, D. Bideau, Phys. Rev. E 62, 2450 (2000).

    Article  ADS  Google Scholar 

  12. D. Beladjine, M. Ammi, L. Oger, A. Valance, Phys. Rev. E 75, 061305 (2007).

    Article  ADS  Google Scholar 

  13. D. Beladjine, PhD thesis, University of Rennes 1 (2007).

  14. M. Ammi, D. Beladjine, L. Oger, A. Valance, Phys. Rev. E 79, 021305 (2009).

    Article  ADS  Google Scholar 

  15. B.T. Werner, P.K. Haff, Sedimentol. 35, 189 (1988).

    Article  ADS  Google Scholar 

  16. R.S. Anderson, P.K. Haff, Science 241, 820 (1988).

    Article  ADS  Google Scholar 

  17. L. Oger, M. Ammi, A. Valance, D. Beladjine, Eur. Phys. J. E 17, 467 (2005).

    Article  Google Scholar 

  18. F. Bourrier, F. Nicot, F. Darve, Granular Matter 10, 415 (2008).

    Article  Google Scholar 

  19. J. Crassous, D. Beladjine, A. Valance, Phys. Rev. Lett. 99, 248001 (2007).

    Article  ADS  Google Scholar 

  20. L.D. Landau, E.M. Lifchitz, Theory of Elasticity (Mir, Moscow, 1967).

    Google Scholar 

  21. V.F. Nesterenko, J. Appl. Mech. Tech. Phys. (USSR) 5, 733 (1983).

    ADS  Google Scholar 

  22. E.J. Hinch, S. Saint-Jean, Proc. R. Soc. London, Ser. A 455, 3201 (1999).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Z. Zhao, C. Liu, B. Brogliato, Phys. Rev. E 78, 031307 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  24. J.T. Jenkins, S.B. Savage, J. Fluid. Mech. 130, 187 (1983).

    Article  MATH  ADS  Google Scholar 

  25. W.S. Jodrey, E.M. Tory, Phys. Rev. E 32, 2347 (1985).

    ADS  Google Scholar 

  26. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953).

  28. R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, M.S. McAdams, B.J. Tromberg, J. Opt. Soc. Am. A 11, 2727 (1994).

    Article  ADS  Google Scholar 

  29. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic Press, 1978).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Valance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valance, A., Crassous, J. Granular medium impacted by a projectile: Experiment and model. Eur. Phys. J. E 30, 43–54 (2009). https://doi.org/10.1140/epje/i2009-10504-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10504-9

PACS

Navigation