Skip to main content
Log in

Critical dynamics of lateral and transversal phase separations in bilayer biomembranes and surfactants

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We consider bilayer biomembranes or surfactants made of two chemically incompatible amphiphile molecules, which may laterally or transversely phase separate into macrodomains, upon variation of some suitable parameter (temperature, lateral pressure, etc.). The purpose is an extensive study of the dynamics of both lateral and transverse phase separations, when the bilayer is suddenly cooled down from a high initial temperature towards a final one very close to the spinodal point. The critical dynamics are investigated through the partial dynamic structure factors of different species. Using a two-order parameter field theory, where the two fields are the composition fluctuations of one component in the leaflets of the bilayer, combined with an extended van Hove approach that is based on two coupled Langevin equations (with noise), we exactly compute these dynamic structure factors. We first find that the dynamics is governed by two time scales. The longest one, \( \tau\) , can be related to the thermal correlation length, \( \xi\) \( \thicksim\) \( \sigma\)| T - T c|-1/2 , by \( \tau\) \( \thicksim\) \( \xi^{z}_{}\) , with the dynamic critical exponent z = 4 , where \( \sigma\) is an atomic length scale, T the absolute temperature, and Tc its critical value. The characteristic time \( \tau\) can be interpreted as the time required for the formation of the final macrophase domains. The second time scale is rather shorter, and can be viewed as the short time during which the unlike phospholipids execute local motion. Second, we demonstrate that the dynamic structure factors obey exact scaling laws, and depend on three lengths, namely the wavelength q-1 (q is the wave vector modulus), the correlation length \( \xi\) , and a length scale R(t) \( \thicksim\) t 1/z (z = 4representing the size of macrophase domains at time t . Of course, the two lengths \( \xi\) and R(t) coincide at the final time \( \tau\) at which the bilayer reaches its final equilibrium state. Finally, the present work must be considered as a natural extension of our previously published one dealing with the study of lateral and transverse phase separations from a static point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.F. Almeida, W.L. Vaz, T.E. Thompson, Biochemistry 31, 7198 (1992).

  2. W.H. Binder, V. Barragan, F.M. Menger, Chem. Int. Ed. 42, 5802 (2003).

    Google Scholar 

  3. W. Knoll, G. Schmidt, H. Rotzer, T. Henkel, W. Pfeiffer, E. Sackmann, S. Mittler-Neher, J. Spinke, Chem. Phys. Lipids 57, 363 (1991).

    Google Scholar 

  4. J.R. Silvius, D. del Giudice, M. Lafleur, Biochemistry 35, 15198 (1996).

    Google Scholar 

  5. J.M. Holopainen, H.L. Brockman, R.E. Brown, P.K.J. Kinnunen, Biophys. J. 80, 765 (2001).

    Google Scholar 

  6. J.M. Holopainen, J.Y.A. Lehtonen, P.K.J. Kinnunen, Chem. Phys. Lipids 88, 1 (1997).

    Google Scholar 

  7. J.M. Holopainen, M. Subramanian, P.K.J. Kinnunen, Biochemistry 37, 17562 (1998).

    Google Scholar 

  8. M. Benhamou, M. Ouarch, H. Kaidi, M. Chahid, Physica A 387, 3511 (2008).

    Google Scholar 

  9. P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953).

  10. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

  11. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1989)

  12. L. van Hove, Phys. Rev. 93, 249 (1954)

    Google Scholar 

  13. K. Simons, E. Ikonen, Nature 387, 569 (1997).

  14. R.G.W. Anderson, K. Jacobson, Science 296, 1821 (2002).

  15. D.A. Brown, E. London, J. Biol. Chem. 275, 17221 (2000).

    Google Scholar 

  16. J. Korlach, Proc. Natl. Acad. Sci. U.S.A. 96, 8461 (1999).

    Google Scholar 

  17. C. Dietrich, Biophys. J. 80, 1417 (2001).

  18. G.W. Feigenson, J.T. Buboltz, Biophys. J. 80, 2775 (2001).

    Google Scholar 

  19. S.L. Veatch, S.L. Keller, Phys. Rev. Lett. 89, 268101 (2002).

    Google Scholar 

  20. T. Baumagart, S.T. Hess, W.W. Webb, Nature 425, 821 (2003).

  21. K. Gaus, Proc. Natl. Acad. Sci. U.S.A. 100, 15554 (2003).

    Google Scholar 

  22. M.R. Vist, J.H. Davis, Biochemistry 29, 451 (1990).

  23. S.A. Safran, P.A. Pincus, D. Andelmann, F.C. MacIntosh, Phys. Rev. A 43, 1071 (1991).

    Google Scholar 

  24. M.N. Sankaram, T.E. Thompson, Proc. Natl. Acad. Sci. U.S.A. 88, 8686 (1991).

    Google Scholar 

  25. S. Koumura, H. Shirotoi, P.D. Olmted, D. Andelman, Europhys. Lett. 67, 321 (2004).

    Google Scholar 

  26. D.W. Allender, M. Schick, Biophys. J. 91, 2928 (2006).

    Google Scholar 

  27. S. Koumura, H. Shirotoi, P.D. Olmted, J. Phys.: Condens. Matter 17, 2951 (2005).

    Google Scholar 

  28. J. Daicic, A. Fogden, I. Carlsson, H. Wennerström, B. Jonsson, Phys. Rev. E 54, 3984 (1996).

    Google Scholar 

  29. A. Fogden, B.W. Ninham, Langmuir 7, 590 (1991).

  30. A. Fogden, D.J. Mitchell, B.W. Ninham, Langmuir 6, 159 (1990).

  31. A. Fogden, J. Daicic, A. Kidane, J. Phys. II 7, 229 (1997).

    Google Scholar 

  32. J.L. Harden, C. Marques, J.-F. Joanny, Langmuir 8, 1170 (1992).

    Google Scholar 

  33. P.G. Higgs, J.-F. Joanny, J. Phys. (Paris) 51, 2307 (1990).

    Google Scholar 

  34. H.N.W. Lekkerkerker, Physica A 159, 319 (1989).

  35. R.A. Marcus, J. Chem. Phys. 23, 1057 (1955).

    Google Scholar 

  36. D.J. Mitchell, B.W. Ninham, Langmuir 5, 1121 (1989).

  37. P.A. Pincus, J.-F. Joanny, D. Andelman, Europhys. Lett. 11, 763 (1990).

    Google Scholar 

  38. M. Winterhalter, W. Helfrich, J. Phys. Chem. 92, 6865 (1988)

    Google Scholar 

  39. G. Porte, C. Ligoure, J. Chem. Phys. 102, 4290 (1995).

    Google Scholar 

  40. See, T. Bickel, C. Marques, C. Jeppesen, Phys. Rev. E 62, 1124 (2000), and references therein.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benhamou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouarch, M., Benhamou, M., Chahid, M. et al. Critical dynamics of lateral and transversal phase separations in bilayer biomembranes and surfactants. Eur. Phys. J. E 29, 319–327 (2009). https://doi.org/10.1140/epje/i2009-10479-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10479-5

PACS

Navigation