Skip to main content
Log in

Segmental relaxation in semicrystalline polymers: A mean-field model for the distribution of relaxation times in confined regimes

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The effect of confinement in the segmental relaxation of polymers is considered. On the basis of a thermodynamic model we discuss the emerging relevance of the fast degrees of freedom in stimulating the much slower segmental relaxation, as an effect of the constraints at the walls of the amorphous regions. In the case that confinement is due to the presence of crystalline domains, a quasi-Poissonian distribution of local constraining conditions is derived as a result of thermodynamic equilibrium. This implies that the average free-energy barrier \( \Delta\) F for conformational rearrangement is of the same order of the dispersion of the barrier heights, \( \delta\)(\( \Delta\) F) , around \( \Delta\) F . As an example, we apply the results to the analysis of the \( \alpha\) -relaxation as observed by dielectric broad-band spectroscopy in semicrystalline poly(ethylene terephthalate) cold-crystallized from either an isotropic or an oriented glass. It is found that in the latter case the regions of cooperative rearrangement are significantly larger than in the former.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.D. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, Inc, New York, 1980).

  2. F. Kremer, A. Schönhals, Broad Band Dielectric Spectroscopy (Springer, Berlin, 2002).

  3. J. Lin, S. Shenogin, S. Nazarenko, Polymer 43, 4733 (2002).

  4. E.J. Donth, Relaxation and Thermodynamics in Polymers (Akademie Verlag, Berlin, 1992).

  5. G. Strobl, The Physics of Polymers, 3rd edition (Springer-Verlag, Berlin Heidelberg, 2007).

  6. J.J. Kasianowicz, M. Kellermayer, D.W. Deamer (Editors), Structure and Dynamics of Confined Polymers, NATO Sci. Partnership Sub-Ser.: 3:, Vol. 87, 2nd edition (2002).

  7. S. Napolitano, M. Wübbenhorst, J. Phys. Chem. B 111, 9197 (2007).

    Google Scholar 

  8. G. Williams, Adv. Polym. Sci. 33, 59 (1979).

  9. J.C. Coburn, R.H. Boyd, Macromolecules 19, 2238 (1986).

  10. T.A. Ezquerra, J. Majszczyk, F.J. Baltá-Calleja, E. López-Cabarcos, K.H. Gardner, B.S. Hsiao, Phys. Rev. B 50, 6023 (1994).

    Google Scholar 

  11. F.J. Baltá-Calleja, A. Flores, G. Di Marco, M. Pieruccini, Phys. Rev. B 75, 224201 (2007).

    Google Scholar 

  12. C. Schick, E. Donth, Phys. Scr. 43, 423 (1991).

    Google Scholar 

  13. J. Dobbertin, J. Hannemann, C. Schick, M. Potter, H. Dehne, J. Chem. Phys. 108, 9062 (1998).

    Google Scholar 

  14. M. Soccio, A. Nogales, N. Lotti, A. Munari, T.A. Ezquerra, Phys. Rev. Lett. 98, 037801 (2007).

    Google Scholar 

  15. M. Soccio, A. Nogales, N. Lotti, A. Munari, T.A. Ezquerra, Polymer 48, 4742 (2007).

  16. K. Fukao, Y. Miyamoto, Phys. Rev. Lett. 79, 4613 (1997).

    Google Scholar 

  17. C. Alvarez, I. Sics, A. Nogales, Z. Denchev, S.S. Funari, T.A. Ezquerra, Polymer 45, 3953 (2004).

  18. A.R. Brás, M.T. Viciosa, Y. Wang, M. Dionisio, J.F. Mano, Macromolecules 39, 6513 (2006).

  19. M. Kanchanasopa, J. Runt, Macromolecules 37, 863 (2004).

  20. J. Mijovi, J.-W. Sy, Macromolecules 35, 6370 (2002).

  21. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Google Scholar 

  22. L.D. Landau, E.M. Lifsits, L.P. Pitaevskij, Fisica Statistica, parte I (Edizioni MIR, Moscow, Editori Riuniti, 1978).

  23. H. Sillescu, J. Non-Cryst. Solids 243, 81 (1999).

    Google Scholar 

  24. W. Greiner, L. Neise, H. Stocker, Thermodynamics and Statistical Mechanics (Springer-Verlag, 1995).

  25. M. Pieruccini, T.A. Ezquerra, M. Lanza, J. Chem. Phys. 127, 104903 (2007).

    Google Scholar 

  26. G. Williams, Chem. Rev. 72, 55 (1972).

    Google Scholar 

  27. A. Schönhals, E. Schlosser, Colloid Polym. Sci. 267, 125 (1989).

    Google Scholar 

  28. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1998).

  29. Unpublished results.

  30. Y.-S. Sun, T.-M. Chung, Y.-J. Li, R.-M. Ho, B.-T. Ko, U-S. Jeng, B. Lotz, Macromolecules 39, 5782 (2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pieruccini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pieruccini, M., Ezquerra, T.A. Segmental relaxation in semicrystalline polymers: A mean-field model for the distribution of relaxation times in confined regimes. Eur. Phys. J. E 29, 163–171 (2009). https://doi.org/10.1140/epje/i2009-10464-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2009-10464-0

PACS

Navigation