Skip to main content
Log in

Modeling of a two-regime crystallization in a multicomponent lipid system under shear flow

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

The kinetics of phase transitions of milk fat triacylglycerols, as model multicomponent lipid systems, were studied under shear in a Couette cell at 17 °C, 17.5 °C and 20 °C under shear rates ranging from 0 to 2880s^-1 using synchrotron X-ray diffraction. Two-dimensional diffraction patterns were captured during the crystallization process. No effect of shear on onset time for phase α from the liquid was observed. Afterwards a two-regime crystallization process was observed. During the first regime, as observed in other systems, shear reduced the onset time of the phase transition from phase α to 2880s. The model previously developed for palm oil (ODE model) worked well to describe this regime, confirming the general value of the proposed ODE model. However, the ODE model did not satisfactorily describe the second regime. We found that, as the system gets closer to equilibrium, the growth regime becomes controlled by diffusion, manifested by the kinetics following a \( \sqrt t \) dependence. This regime was found to be consistent with a mechanism combining step growth at a kink with progressive selection of the crystallizing moieties. This mechanism is in agreement with the displacement of the diffraction peak positions, which revealed how increased shear rate promotes the crystallization of the higher melting fraction affecting the composition of the crystallites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.J. Wright, R.W. Hartel, S.S. Narine, A.G. Marangoni, J. Am. Oil Chem. Soc. 77, 463 (2000).

    Google Scholar 

  2. A.G. Marangoni, R.W. Lencki, J. Agricult. Food Chem. 46, 3879 (1998).

    Google Scholar 

  3. K. Sato, Chem. Eng. Sci. 56, 2255 (2001).

    Google Scholar 

  4. E.B. Sirota, A.B. Herhold, Science 283, 529 (1999).

  5. K. Sato, S. Ueno, J. Yano, Prog. Lipid Res. 38, 91 (1999).

    Google Scholar 

  6. C. Lopez, F. Lavigne, P. Lesieur, C. Bourgaux, M. Ollivon, J. Dairy Sci. 84, 756 (2001).

    Google Scholar 

  7. C. Lopez, F. Lavigne, P. Lesieur, G. Keller, M. Ollivon, J. Dairy Sci. 84, 2402 (2001).

    Google Scholar 

  8. B. Breitschuh, E.J. Windhab, J. Am. Oil Chem. Soc. 75, 897 (1998).

    Google Scholar 

  9. C. Lopez, C. Bourgaux, P. Lesieur, M. Ollivon, Lait 82, 317 (2002).

  10. E. ten Grotenhius, G.A.v. Aken, K.F.v. Malssen, H. Schenk, J. Am. Oil Chem. Soc. 76, 1031 (1999).

  11. G. Mazzanti, S.E. Guthrie, E.B. Sirota, A.G. Marangoni, S.H.J. Idziak, Crystal Growth Design 4, 1303 (2004).

    Google Scholar 

  12. C. Lopez, J. Colloid Interface Sci. 254, 64 (2002).

  13. C. Lopez, P. Lesieur, C. Bourgaux, G. Keller, M. Ollivon, J. Colloid Interface Sci. 240, 150 (2001).

    Google Scholar 

  14. C. Lopez, P. Lesieur, G. Keller, M. Ollivon, J. Colloid Interface Sci. 229, 62 (2000).

    Google Scholar 

  15. C. Lopez, J. Am. Oil Chem. Soc. 78, 1233 (2001).

    Google Scholar 

  16. G. Mazzanti, S.E. Guthrie, E.B. Sirota, A.G. Marangoni, S.H.J. Idziak, Crystal Growth Design 3, 721 (2003).

    Google Scholar 

  17. G. Mazzanti, A.G. Marangoni, S.H.J. Idziak, Phys. Rev. E 71, 041607 (2005).

    Google Scholar 

  18. W.S. Rasband, ImageJ (National Institutes of Health, Bethesda, Maryland, USA, 1997-2004).

  19. B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, 3rd edition (Prentice Hall, New Jersey, 2001).

  20. A. Einstein, Ann. Physik. 17, 549 (1905).

    Google Scholar 

  21. C. Zener, J. Appl. Phys. 20, 950 (1949).

    Google Scholar 

  22. M. Avrami, J. Chem. Phys. 8, 212 (1940).

    Google Scholar 

  23. W.A. Johnson, R.F. Mehl, Trans. Am. Inst. Mining Metallurg. Engin. 135, 416 (1939).

    Google Scholar 

  24. L. Kerschhofer, Mineral. Mag. 62, 617 (1998).

  25. A.G. Marangoni, J. Am. Oil Chem. Soc. 75, 1465 (1998).

  26. M.L. Herrera, M.D. Gatti, R.W. Hartel, Food Res. Int. 32, 289 (1999).

    Google Scholar 

  27. A.I. Foubert, B. Vanhoutte, K. Dewettinck, Eur. J. Lipid Sci. Technol. 106, 531 (2004).

    Google Scholar 

  28. A. Fick, London, Edinburgh, and Dublin Philos. Mag. J. Sci. 10, 30 (1855).

    Google Scholar 

  29. W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. London, Ser. A-Math. Phys. Sci. 243, 299 (1951).

  30. R. Kaischew, J. Crystal Growth 51, 643 (1981).

    Google Scholar 

  31. A.R. Verma, P.M. Reynolds, Proc. Phys. Soc. London, Sect. B 66, 414 (1953).

    Google Scholar 

  32. A.A. Chernov, J. Crystal Growth 264, 499 (2004).

    Google Scholar 

  33. P. Bennema, J. Crystal Growth 69, 182 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzanti, G., Marangoni, A.G. & Idziak, S.H.J. Modeling of a two-regime crystallization in a multicomponent lipid system under shear flow. Eur. Phys. J. E 27, 135–144 (2008). https://doi.org/10.1140/epje/i2007-10359-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10359-0

PACS.

Navigation