Skip to main content

Advertisement

Log in

The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Acoustic plane progressive waves incident on a sphere immersed in a nonviscous fluid exert a steady force acting along the direction of wave motion. It is shown here that when an elastic gold sphere is coated with a polymer-type (polyethylene) viscoelastic layer, this force becomes a force of attraction in the long wavelength limit. Kinetic, potential and Reynolds stress energy densities are defined and evaluated with and in the absence of absorption in the layer. Without absorption, the mechanical energy density counteracts the Reynolds stress energy density, which causes a repulsive force. However, in the case of absorption, the attractive force is predicted to be a physical consequence of a mutual contribution of both the mechanical and the Reynolds stress energy densities. This condition provides an impetus for further designing acoustic tweezers operating with plane progressive waves as well as fabricating polymer-coated gold particles for specific biophysical and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ashkin, Proc. Natl. Acad. Sci. USA 94, 4853 (1997); D. McGloin, Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. 364, 3521 (2006).

    Article  ADS  Google Scholar 

  2. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).

    Article  ADS  Google Scholar 

  3. S. Chu, Rev. Mod. Phys. 70, 685 (1998); C.N. Cohen-Tannoudji, Rev. Mod. Phys. 70, 707 (1998); W.D. Phillips, Rev. Mod. Phys. 70, 721 (1998); R. Fulton, A.I. Bishop, M.N. Shneider, P.F. Barker, Nat. Phys. 2, 465 (2006).

    Article  ADS  Google Scholar 

  4. R.G. Holt, E.H. Trinh, Phys. Rev. Lett. 77, 1274 (1996).

    Article  ADS  Google Scholar 

  5. P.L. Marston, D.B. Thiessen, Ann. N.Y. Acad. Sci. 1027, 414 (2004).

    Article  Google Scholar 

  6. S.K. Chung, E.H. Trinh, J. Cryst. Growth 194, 384 (1998).

    Article  ADS  Google Scholar 

  7. H. Masuhara, T. Asahi, Y. Hosokawa, Pure Appl. Chem. 78, 2205 (2006).

    Article  Google Scholar 

  8. K. Svoboda, S.M. Block, Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994).

    Article  Google Scholar 

  9. H. Oana, K. Kubo, K. Yoshikawa, H. Atomi, T. Imanaka, Appl. Phys. Lett. 85, 5090 (2004); U.F. Keyser, B.N. Koeleman, S. van Dorp, D. Krapf, R.M.M. Smeets, S.G. Lemay, N.H. Dekker, C. Dekker, Nat. Phys. 2, 473 (2006); U.F. Keyser, J. van der Does, C. Dekker, N.H. Dekker, Rev. Sci. Instrum. 77, 105105 (2006).

    Article  ADS  Google Scholar 

  10. R. Huber, S. Burggraf, T. Mayer, S.M. Barns, P. Rossnagel, K.O. Stetter, Nature 376, 57 (1995).

    Article  ADS  Google Scholar 

  11. D. Chatterjee, P. Jain, K. Sarkar, Phys. Fluids 17, 100603 (2005).

    Google Scholar 

  12. D.P. O’Neal, L.R. Hirsch, N.J. Halas, J.D. Payne, J.L. West, Cancer Lett. 209, 171 (2004).

    Article  Google Scholar 

  13. Y.H. Lee, C.A. Peng, Gene Ther. 12, 625 (2005).

    Article  Google Scholar 

  14. H.M. Hertz, J. Appl. Phys. 78, 4845 (1995); J.G. McDaniel, R.G. Holt, Phys. Rev. E 61, 2204 (2000); R. Gomez-Medina, P. San Jose, A. Garcia-Martin, M. Lester, M. Nieto-Vesperinas, J.J. Saenz, Phys. Rev. Lett. 86, 4275 (2001); M.J. Marr-Lyon, D.B. Thiessen, P.L. Marston, Phys. Rev. Lett. 86, 2293 (2001); P.H. Jones, E. Stride, N. Saffari, Appl. Phys. Lett. 89, 081113 (2006).

    Article  ADS  Google Scholar 

  15. F.E. Borgnis, Rev. Mod. Phys. 25, 653 (1953).

    Article  MATH  ADS  Google Scholar 

  16. T.F.W. Embleton, J. Acoust. Soc. Am. 26, 40 (1954); X. Chen, R.E. Apfel, J. Acoust. Soc. Am. 99, 713 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  17. E.H. Brandt, Nature 413, 474 (2001); F.G. Mitri, J. Phys. A 38, 9395 (2005); Eur. Phys. J. B 44, 71 (2005); F.G. Mitri, Z.E.A. Fellah, J. Phys. A 39, 6085 (2006); W. Wei, D.B. Thiessen, P.L. Marston, J. Acoust. Soc. Am. 116, 201 (2004).

    Article  ADS  Google Scholar 

  18. J. Lee, K.K. Shung, Ultrasound Med. Biol. 32, 1575 (2006).

    Article  Google Scholar 

  19. P.L. Marston, J. Acoust. Soc. Am. 120, 3518 (2006).

    Article  ADS  Google Scholar 

  20. F.G. Mitri, Ann. Phys. 323, 1604 (2008); F.G. Mitri, Z.E.A. Fellah, to be published in IEEE Trans. UFFC.

    Article  MATH  ADS  Google Scholar 

  21. J. Wu, J. Acoust. Soc. Am. 89, 2140 (1991).

    Article  ADS  Google Scholar 

  22. T. Hasegawa, K. Yosioka, J. Acoust. Soc. Am. 46, 1139 (1969).

    Article  MATH  ADS  Google Scholar 

  23. F.G. Mitri, Wave Motion 43, 12 (2005).

    Article  MathSciNet  Google Scholar 

  24. T.K. Mandal, M.S. Fleming, D.R. Walt, Nano Lett. 2, 3 (2002); J.L. West, N.J. Halas, Annu. Rev. Biomed. Eng. 5, 285 (2003); M.K. Corbierre, N.S. Cameron, R.B. Lennox, Langmuir 20, 2867 (2004); M.R. Gwinn, V. Vallyathan, Environ. Health Persp. 114, 1818 (2006); N.B. Inc., www.nanospectra.com.

    Article  Google Scholar 

  25. K. Mallick, M. Witcomb, M. Scurrell, Eur. Phys. J. E 20, 347 (2006).

    Article  Google Scholar 

  26. M. Haruta, Gold Bull. 37, 27 (2004).

    Google Scholar 

  27. D.L. Feldheim, K.C. Grabar, M.J. Natan, T.E. Mallouk, J. Am. Chem. Soc. 118, 7640 (1996); D.L. Feldheim, C.D. Keating, Chem. Soc. Rev. 27, 1 (1998).

    Article  Google Scholar 

  28. S. Sershen, J. West, Adv. Drug Delivery Rev. 54, 1225 (2002); A.W. Smith, Adv. Drug Delivery Rev. 57, 1539 (2005).

    Article  Google Scholar 

  29. F.G. Mitri, Eur. Phys. J. B 43, 379 (2005).

    Article  ADS  Google Scholar 

  30. K. Yosioka, Y. Kawasima, H. Hirano, Acustica 5, 173 (1955).

    Google Scholar 

  31. G.R. Torr, Am. J. Phys. 52, 402 (1984).

    Article  ADS  Google Scholar 

  32. T. Hasegawa, T. Kido, T. Iizuka, C. Matsuoka, Acoust. Sci. Technol. 21, 145 (2000).

    Google Scholar 

  33. T. Hasegawa, J. Acoust. Soc. Am. 61, 1445 (1977).

    Article  ADS  Google Scholar 

  34. B. Hartmann, J. Jarzynski, J. Appl. Phys. 43, 4304 (1972).

    Article  ADS  Google Scholar 

  35. A.A. Doinikov, Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 447, 447 (1994); Phys. Rev. E 54, 6297 (1996).

    MATH  ADS  MathSciNet  Google Scholar 

  36. S.D. Danilov, M.A. Mironov, J. Acoust. Soc. Am. 107, 143 (2000).

    Article  ADS  Google Scholar 

  37. F.G. Mitri, New J. Phys. 8, 138 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Mitri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitri, F.G., Fellah, Z.E.A. The mechanism of the attracting acoustic radiation force on a polymer-coated gold sphere in plane progressive waves. Eur. Phys. J. E 26, 337–343 (2008). https://doi.org/10.1140/epje/i2007-10337-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10337-6

PACS

Navigation