Skip to main content
Log in

Detachment of stretched viscoelastic fibrils

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

New experimental results are presented about the final stage of failure of soft viscoelastic adhesives. A microscopic view of the detachment of the adhesive shows that after cavity growth and expansion, well adhered soft adhesives form a network of fibrils connected to expanded contacting feet which fail via a sliding mechanism, sensitive to interfacial shear stresses rather than by a fracture mechanism as sometimes suggested in earlier work. A mechanical model of this stretching and sliding failure phenomenon is presented which treats the fibril as a nonlinear elastic or viscoelastic rod and the foot as an elastic layer subject to a friction force proportional to the local displacement rate. The force on the stretched rod drives the sliding of the foot against the substrate. The main experimental parameter controlling the failure strain and stress during the sliding process is identified by the model as the normalized probe pull speed, which also depends on the magnitude of the friction and PSA modulus. In addition, the material properties, viscoelasticity and finite extensibility of the polymer chains, are shown to have an important effect on both the details of the sliding process and the ultimate failure strain and stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Creton, MRS Bull. 28, 434 (2003).

    Google Scholar 

  2. J. Teisseire, F. Nallet, P. Fabre, C. Gay, J. Adhes. 83, 613 (2007)

    Article  Google Scholar 

  3. T. Yamaguchi, H. Morita, M. Doi, Eur. Phys. J. E 20, 7 (2006).

    Article  Google Scholar 

  4. A. Zosel, Colloid Polym. Sci. 263, 541 (1985)

    Article  Google Scholar 

  5. A. Lindner, T. Maevis, R. Brummer, B. Lühmann, C. Creton, Langmuir 20, 9156 (2004).

    Article  Google Scholar 

  6. A. Chiche, J. Dollhofer, C. Creton, Eur. Phys. J. E 17, 389 (2005).

    Article  Google Scholar 

  7. A. Zosel, J. Adhes. 30, 135 (1989).

    Article  Google Scholar 

  8. H. Lakrout, P. Sergot, C. Creton, J. Adhes. 69, 307 (1999).

    Article  Google Scholar 

  9. A. Chiche, W.H. Zhang, C.M. Stafford, A. Karim, Meas. Sci. Technol. 16, 183 (2005)

    Article  ADS  Google Scholar 

  10. Y.Y. Lin, C.Y. Hui, H.D. Conway, J. Polym. Sci. B: Polym. Phys. 38, 2769 (2000)

    Article  Google Scholar 

  11. A.E. Green, Zerna, Theoretical Elasticity (Oxford University press, 1954).

  12. M.L. Williams, R.A. Schapery, Int. J. Fract. Mech. 1, 64 (1965)

    Article  Google Scholar 

  13. Y.Y. Lin, C.Y. Hui, Int. J. Fract. 126, 205 (2004).

    Article  Google Scholar 

  14. T. Yamaguchi, M. Doi, Eur. Phys. J. E 21, 331 (2006).

    Article  Google Scholar 

  15. J. Dollhofer, A. Chiche, V. Muralidharan, C. Creton, C.Y. Hui, Int. J. Solids Struct. 41, 6111 (2004).

    Article  MATH  Google Scholar 

  16. A.E. O'Connor, N. Willenbacher, Int. J. Adhes. Adhesives 24, 335 (2004)

    Article  Google Scholar 

  17. A. Lindner, B. Lestriez M.S., R. Brummer, T. Maevis, B. Lühmann, C. Creton, J. Adhes. 82, 267 (2006).

    Article  Google Scholar 

  18. K. Brown, J.C. Hooker, C. Creton, Macromol. Mater. Engin. 287, 163 (2002).

    Article  Google Scholar 

  19. N. Amouroux, J. Petit, L. Léger, Langmuir 17, 6510 (2001).

    Article  Google Scholar 

  20. A.N. Gent, Rubber Chem. Technol. 69, 59 (1996).

    MathSciNet  Google Scholar 

  21. L.R.G. Treloar, in The Physics of Rubber Elasticity (Clarendon Press, Oxford, 1975) pp. 210.

  22. R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids: Vol. 1 Fluid Mechanics, 2nd edition (Wiley, New York, 1987).

  23. W.H. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd edition (Cambridge University Press, Cambridge, 1992).

  24. C. Verdier, J.M. Piau, J. Polym. Sci. B: Polym. Phys. 41, 3139 (2003).

    Article  Google Scholar 

  25. A. Roos, C. Creton, Macromol. Symp. 214, 147 (2004)

    Article  Google Scholar 

  26. A.N. Gent, R.P. Petrich, Proc. R. Soc. London, Ser. A 310, 433 (1969)

    Google Scholar 

  27. M. Tirumkudulu, W.B. Russel, T.J. Huang, J. Rheol. 47, 1399 (2003)

    Article  Google Scholar 

  28. G. Josse, P. Sergot, M. Dorget, C. Creton, J. Adhes. 80, 87 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Creton.

Electronic supplementary material

The file

Supplementary material

shows Appendix B

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glassmaker, N.J., Hui, C.Y., Yamaguchi, T. et al. Detachment of stretched viscoelastic fibrils. Eur. Phys. J. E 25, 253–266 (2008). https://doi.org/10.1140/epje/i2007-10287-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10287-y

PACS.

Navigation