Skip to main content
Log in

Structure and rheological properties of model microemulsion networks filled with nanoparticles

  • ISMC-2007
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Model microemulsion networks of oil droplets stabilized by non-ionic surfactant and telechelic polymer C18 -PEO(10k)- C18 have been studied for two droplet-to-polymer size ratios. The rheological properties of the networks have been measured as a function of network connectivity and can be described in terms of simple percolation laws. The network structure has been characterised by Small Angle Neutron Scattering (SANS). A Reverse Monte Carlo (RMC) approach is used to demonstrate the interplay of attraction and repulsion induced by the copolymer. These model networks are then used as matrix for the incorporation of silica nanoparticles (R = 10 nm), individual dispersion being checked by scattering. A strong impact on the rheological properties is found for silica volume fractions up to 9%. \(\ensuremath q(\AA^{-1})\)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Annable, R. Buscall, R. Ettelaie, D. Whittlestone, J. Rheol. 37, 695 (1993).

    Article  ADS  Google Scholar 

  2. G. Fleischer, F. Stieber, U. Hofmeier, H.F. Eicke, Langmuir 10, 1780 (1994).

    Article  Google Scholar 

  3. D. Vollmer, J. Vollmer, B. Stühn, E. Wehrli, H.F. Eicke, Phys. Rev. E 52, 5146 (1995).

    Article  ADS  Google Scholar 

  4. M. Odenwald, H.F. Eicke, W. Meier, Macromolecules 28, 5069 (1995).

    Article  ADS  Google Scholar 

  5. M. Filali, R. Aznar, M. Svenson, G. Porte, J. Appell, J. Phys. Chem. B 103, 7293 (1999).

    Article  Google Scholar 

  6. B. Xu, L. Li, A. Yekta, Z. Masoumi, S. Kanagalingam, M.A. Winnik, K.W. Zhang, P.M. Macdonald, Langmuir 13, 2447 (1997).

    Article  Google Scholar 

  7. H. BaggerJorgensen, L. Coppola, K. Thuresson, U. Olsson, K. Mortensen, Langmuir 13, 4204 (1997).

    Article  Google Scholar 

  8. E. Michel, M. Filali, R. Aznar, G. Porte, J. Appell, Langmuir 16, 8702 (2000).

    Article  Google Scholar 

  9. F. Molino, J. Appell, M. Filali, E. Michel, G. Porte, S. Mora, E. Sunyer, J. Phys.: Condens. Matter 12, A491 (2000).

  10. F.E. Antunes, K. Thuresson, B. Lindman, M.G. Miguel, Colloids Surf. A 215, 87 (2003).

    Article  Google Scholar 

  11. P. Kujawa, H. Watanabe, F. Tanaka, F.M. Winnik, Eur. Phys. J. E 17, 129 (2005).

    Article  Google Scholar 

  12. G. Porte, C. Ligoure, J. Appell, R. Aznar, J. Stat. Mech. P05005 (2006).

  13. Y. Serero, R. Aznar, G. Porte, J.F. Berret, D. Calvet, A. Collet, M. Viguier, Phys. Rev. Lett. 81, 5584 (1998).

    Article  ADS  Google Scholar 

  14. Y. Serero, V. Jacobsen, J.F. Berret, R. May, Macromolecules 33, 1841 (2000).

    Article  ADS  Google Scholar 

  15. T.P. Lodge, R. Taribagil, T. Yoshida, M.A. Hillmyer, Macromolecules 40, 4728 (2007).

    Article  ADS  Google Scholar 

  16. L. Ramos, C. Ligoure, Macromolecules 40, 1248 (2007).

    Article  ADS  Google Scholar 

  17. T.G. Mason, K. Ganesan, J.H. van Zanten, D. Wirtz, S.C. Kuo, Phys. Rev. Lett. 79, 3282 (1997).

    Article  ADS  Google Scholar 

  18. J. Arrault, W.C.K. Poon, M.E. Cates, Phys. Rev. E 59, 3242 (1999).

    Article  ADS  Google Scholar 

  19. I. Grillo, P. Levitz, T. Zemb, Langmuir 16, 4830 (2000).

    Article  Google Scholar 

  20. V. Castelletto, I.A. Ansari, I.W. Hamley, Macromolecules 36, 1694 (2003).

    Article  ADS  Google Scholar 

  21. P. Poulin, V.A. Raghunathan, P. Richetti, D. Roux, J. Phys. II 4, 1557 (1994).

    Article  Google Scholar 

  22. V.A. Raghunathan, P. Richetti, D. Roux, Langmuir 12, 3789 (1996).

    Article  Google Scholar 

  23. P. Poulin, N. Francès, O. Mondain-Monval, Phys. Rev. E 59, 4384 (1999).

    Article  ADS  Google Scholar 

  24. L. Ramos, P. Fabre, R. Ober, Eur. Phys. J. B 1, 319 (1998).

    Article  ADS  Google Scholar 

  25. P.S. Kumar, S.K. Pal, S. Kumar, V. Lakshminarayanan, Langmuir 23, 3445 (2007).

    Article  Google Scholar 

  26. R. Bandyopadhyay, A.K. Sood, J. Colloids Interface Sci. 283, 585 (2005).

    Article  Google Scholar 

  27. G. Petekidis, L.A. Galloway, S.U. Egelhaaf, M.E. Cates, W.C.K. Poon, Langmuir 18, 4248 (2002).

    Article  Google Scholar 

  28. E. Theunissen, N. Overbergh, H. Reynaers, S. Antoun, R. Jerome, K. Mortensen, Polymer 45, 1857 (2004).

    Article  Google Scholar 

  29. M. Kamibayashi, H. Ogura, Y. Otsubo, J. Colloids Interface Sci. 290, 592 (2005).

    Article  Google Scholar 

  30. V. Testard, C. Ligoure, J. Oberdisse, submitted (2008).

  31. D. Calvet, Thèse, Université Montpellier 2 (2000).

  32. D. Calvet, A. Collet, M. Viguier, J.F. Berret, Y. Serero, Macromolecules 36, 449 (2003).

    Article  ADS  Google Scholar 

  33. J.P. Kaczmarski, J.E. Glass, Macromolecules 26, 5149 (1993).

    Article  ADS  Google Scholar 

  34. P.S. Goyal, S.V.G. Menon, B.A. Dasannacharya, P. Thiyagarajan, Phys. Rev. E 51, 2308 (1995).

    Article  ADS  Google Scholar 

  35. J. Oberdisse, C. Couve, J. Appell, J.F. Berret, C. Ligoure, G. Porte, Langmuir 12, 1212 (1996).

    Article  Google Scholar 

  36. M. Filali, M.J. Ouazzani, E. Michel, R. Aznar, G. Porte, J. Appell, J. Phys. Chem. B 105, 10528 (2001).

    Article  Google Scholar 

  37. H. BaggerJorgensen, U. Olsson, K. Mortensen, Langmuir 13, 1413 (1997).

    Article  Google Scholar 

  38. S.T. Milner, T.A. Witten, Macromolecules 25, 5495 (1992).

    Article  ADS  Google Scholar 

  39. S.R. Bhatia, W.B. Russel, Macromolecules 33, 5713 (2000).

    Article  ADS  Google Scholar 

  40. A. Zilman, J. Kieffer, F. Molino, G. Porte, S.A. Safran, Phys. Rev. Lett. 91, 015901 (2003).

    Article  ADS  Google Scholar 

  41. T. Indei, J. Chem. Phys. 127, 144905 (2007).

    Article  ADS  Google Scholar 

  42. J. Oberdisse, Macromolecules 35, 9441 (2002).

    Article  ADS  Google Scholar 

  43. J. Oberdisse, Soft Matter 2, 29 (2006).

    Article  Google Scholar 

  44. A. Einstein, Ann. Phys. 19, 289 (1906).

    Article  Google Scholar 

  45. H.M. Smallwood, J. Appl. Phys. 15, 758 (1944).

    Article  ADS  Google Scholar 

  46. E. Guth, J. Appl. Phys. 16, 20 (1945).

    Article  ADS  Google Scholar 

  47. S. Maccarrone, H. Frielinghaus, J. Allgaier, D. Richter, P. Lindner, Langmuir 23, 9559 (2007).

    Article  Google Scholar 

  48. N.F. Carnahan, K.E. Starling, J. Chem. Phys. 51, 635 (1969).

    Article  ADS  Google Scholar 

  49. R.L. McGreevy, J. Phys.: Condens. Matter 13, R877 (2001).

  50. R.L. McGreevy, P. Zetterstrom, Curr. Opin. Solid State Mater. Sci. 7, 41 (2003).

    Article  Google Scholar 

  51. J. Oberdisse, P. Hine, W. Pyckhout-Hintzen, Soft Matter 2, 476 (2007).

    Article  Google Scholar 

  52. P. Lindner, Neutrons, X-ray and Light Scattering (North Holland, Elsevier, 2002).

  53. J. Brunner-Popela, O. Glatter, J. Appl. Cryst. 30, 431 (1997).

    Article  Google Scholar 

  54. A. Bergmann, G. Fritz G.O., J. Appl. Cryst. 33, 1212 (2000).

    Article  Google Scholar 

  55. G. Despert, J. Oberdisse, Langmuir 19, 7604 (2003).

    Article  Google Scholar 

  56. J. Oberdisse, B. Deme, Macromolecules 35, 4397 (2002).

    Article  ADS  Google Scholar 

  57. J. Oberdisse, Phys. Chem. Chem. Phys. 6, 1557 (2004).

    Article  Google Scholar 

  58. M. Surve, V. Pryamitsyn, V. Ganesan, Phys. Rev. Lett. 96 (2006).

  59. P.I. Hurtado, L. Berthier, W. Kob, Phys. Rev. Lett. 98, 135503 (2007).

    Article  ADS  Google Scholar 

  60. M. Surve, V. Pryamitsyn, V. Ganesan, Langmuir 22, 969 (2006).

    Article  Google Scholar 

  61. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

  62. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London 1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Oberdisse.

Electronic supplementary material

The file

Supplementary material

shows the normalized scattering cross-section \(\ensuremath I/\Phi\) in cm \(\ensuremath ^{-1}\) of two microemulsion samples ( \(\ensuremath \Omega=0.4\) ; Γ = 0.7 and \(\ensuremath \circ\) : \(\ensuremath \Phi=0.01\) ; \(\ensuremath \square\) : \(\ensuremath \Phi =0.2\) as a function of the wave vector \(\ensuremath q(\AA^{-1})\) .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puech, N., Mora, S., Testard, V. et al. Structure and rheological properties of model microemulsion networks filled with nanoparticles. Eur. Phys. J. E 26, 13–24 (2008). https://doi.org/10.1140/epje/i2007-10275-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2007-10275-3

PACS.

Navigation